参考文献/References:
[1]Henning RJ. Type-2 diabetes mellitus and cardiovascular disease[J]. Future Cardiol,2018,14(6):491-509.
[2]Defronzo RA,Ferrannini E,Groop L,et al. Type 2 diabetes mellitus[J]. Nat Rev Dis Primers ,2015,1:15019.
[3]Marso SP,Bain SC,Consoli A,et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med,2016,375(19):1834-1844.
[4]Wu Q,Li D,Huang C,et al. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists[J].?Biomed Pharmacother,2022,153:113517.
[5]Müller TD,Finan B,Bloom SR,et al. Glucagon-like peptide 1 (GLP-1)[J].Mol Metab,2019,30:72-130.
[6]Drucker DJ. The cardiovascular biology of glucagon-like peptide-1[J].?Cell Metab,2016,24(1):15-30.
[7]Aroda VR. A review of GLP-1 receptor agonists:evolution and advancement,through the lens of randomised controlled trials[J].?Diabetes Obes Metab,2018,20 suppl 1:22-33.
[8]Holman RR,Bethel MA,Mentz RJ,et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes[J].N Engl J Med,2017,377(13):1228-1239.
[9]Hernandez AF,Green JB,Janmohamed S,et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes):a double-blind,randomised placebo-controlled trial[J].Lancet,2018,392(10157):1519-1529.
[10]Gerstein HC,Colhoun HM,Dagenais GR,et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND):a double-blind,randomised placebo-controlled trial[J].?Lancet,2019,394(10193):121-130.
[11]Marso SP,Daniels GH,Brown-Frandsen K,et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[J].N Engl J Med,2016,375(4):311-322.
[12]Smits MM,van Raalte DH. Safety of semaglutide[J]. Front Endocrinol (Lausanne),2021,12:645563.
[13]Mahapatra MK,Karuppasamy M,Sahoo BM. Semaglutide,a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes[J].?Rev Endocr Metab Disord,2022,23(3):521-539.
[14]Libianto R,Batu D,MacIsaac RJ,et al. Pathophysiological links between diabetes and blood pressure[J].Can J Cardiol,2018,34(5):585-594.
[15]Tsapas A,Karagiannis T,Kakotrichi P,et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes:a systematic review and network meta-analysis[J].?Diabetes Obes Metab,2021,23(9):2116-2124.
[16]Tsapas A,Avgerinos I,Karagiannis T,et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes:a systematic review and network meta-analysis[J].?Ann Intern Med,2020,173(4):278-286.
[17]Sukumaran V,Tsuchimochi H,Sonobe T,et al. Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet[J].?Cardiovasc Diabetol,2020,19(1):24.
[18]Torres Fernandez ED,Huffman AM,Syed M,et al. Effect of GLP-1 receptor agonists in the cardiometabolic complications in a rat model of postmenopausal PCOS[J].Endocrinology,2019,160(12):2787-2799.
[19]Asmar A,Cramon PK,Simonsen L,et al. Extracellular fluid volume expansion uncovers a natriuretic action of GLP-1:a functional GLP-1-renal axis in man[J].J Clin Endocrinol Metab,2019,104(7):2509-2519.
[20]Asmar A,Simonsen L,Asmar M,et al. Glucagon-like peptide-1 does not have acute effects on central or renal hemodynamics in patients with type 2 diabetes without nephropathy[J].Am J Physiol Endocrinol Metab,2016,310(9):E744-E753.
[21]Chen X,Chen S,Ren Q,et al. Metabolomics provides insights into renoprotective effects of semaglutide in obese mice[J].?Drug Des Devel Ther,2022,16:3893-3913.
[22]Dalb?ge LS,Christensen M,Madsen MR,et al. Nephroprotective effects of semaglutide as mono- and combination treatment with lisinopril in a mouse model of hypertension-accelerated diabetic kidney disease[J]. Biomedicines,2022,10(7):1661.
[23]Ougaard ME,Sembach FE,Jensen HE,et al. Liraglutide improves the kidney function in a murine model of chronic kidney disease[J].?Nephron,2020,144(11):595-606.
[24]El Meouchy P,Wahoud M,Allam S,et al. Hypertension related to obesity:pathogenesis,characteristics and factors for control[J].Int J Mol Sci,2022,23(20):12305.
[25]Wilding JPH,Batterham RL,Calanna S,et al. Once-weekly semaglutide in adults with overweight or obesity[J].?N Engl J Med,2021,384(11):989-1002.
[26]Yin W,Jiang Y,Xu S,et al. Protein kinase?C and protein kinase?A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats[J].J Diabetes Investig,2019,10(3):613-625.
[27]Bendotti G,Montefusco L,Lunati ME,et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists[J].?Pharmacol Res,2022,182:106320.
[28]B?ck M,Yurdagul A Jr,Tabas I,et al. Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities[J].Nat Rev Cardiol,2019,16(7):389-406.
[29]Sawami K,Tanaka A,Node K. Anti-obesity therapy for cardiovascular disease prevention:potential expected roles of glucagon-like peptide-1 receptor agonists[J].?Cardiovasc Diabetol,2022,21(1):176.
[30]Jensen JK,Binderup T,Grandjean CE,et al. Semaglutide reduces vascular inflammation investigated by PET in a rabbit model of advanced atherosclerosis[J]. Atherosclerosis,2022,352:88-95.
[31]Rakipovski G,Rolin B,N?hr J,et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in?ApoE-/- and LDLr-/-?mice by?a?mechanism that includes inflammatory pathways[J].?JACC Basic Transl Sci,2018,3(6):844-857.
[32]McLean BA,Wong CK,Kaur KD,et al. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide[J]. JCI Insight,2021,6(22):e153732.
[33]Kushima H,Mori Y,Koshibu M,et al. The role of endothelial nitric oxide in the anti-restenotic effects of liraglutide in a mouse model of restenosis[J].Cardiovasc Diabetol,2017,16(1):122.
[34]Jojima T,Uchida K,Akimoto K,et al. Liraglutide,a GLP-1 receptor agonist,inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation,and delays atherosclerosis in ApoE deficient mice[J].?Atherosclerosis,2017,261:44-51.
[35]Zimmerman RS,Hobbs TM,Wells BJ,et al. Association of glucagon-like peptide-1 receptor agonist use and rates of acute myocardial infarction,stroke and overall mortality in patients with type 2 diabetes mellitus in a large integrated health system[J].?Diabetes Obes Metab,2017,19(11):1555-1561.
[36]Wang D,Luo P,Wang Y,et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism[J].?Diabetes,2013,62(5):1697-1708.
[37]Bell DSH,Goncalves E. Heart failure in the patient with diabetes:Epidemiology,aetiology,prognosis,therapy and the effect of glucose-lowering medications[J].?Diabetes Obes Metab,2019,21(6):1277-1290.
[38]Pérez-Belmonte LM,Sanz-Cánovas J,García de Lucas MD,et al. Efficacy and safety of semaglutide for the management of obese patients with type 2 diabetes and chronic heart failure in real-world clinical practice[J].Front Endocrinol (Lausanne),2022,13:851035.
[39]Margulies KB,Anstrom KJ,Hernandez AF,et al. GLP-1 agonist therapy for advanced heart failure with reduced ejection fraction:design and rationale for the functional impact of GLP-1 for heart failure treatment study[J].?Circ Heart Fail,2014,7(4):673-679.
[40]Ussher JR,Greenwell AA,Nguyen MA,et al. Cardiovascular effects of incretin-based therapies:integrating mechanisms with cardiovascular outcome trials[J].Diabetes,2022,71(2):173-183.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(8):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(8):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(8):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(8):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
[11]李嘉仪 黄龙祥 罗素新.钠-葡萄糖协同转运蛋白-2抑制剂在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1245.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.015]
LI JiayiHUANG LongxiangLUO Suxin.SGLT-2 Inhibitors in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(8):1245.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.015]
[12]耿肖囡 肖东斌 魏鑫 惠学志.达格列净对心血管疾病的预防保护机制[J].心血管病学进展,2019,(8):1169.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.025]
GENG Xiaonan,XIAO Dongbin,WEI xin,et al.Preventive and Protective Mechanism of Dagliflozin for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(8):1169.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.025]
[13]辛玉晶,刘昊凌.钠-葡萄糖协同转运蛋白2抑制剂与2型糖尿病心血管危险因素的研究进展[J].心血管病学进展,2020,(3):235.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.005]
XIN Yujing,LIU Haoling.SGLT-2 Inhibitors and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2020,(8):235.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.005]
[14]张欣 郭艺芳.钠-葡萄糖协同转运蛋白2抑制剂相关心血管益处的可能潜在机制[J].心血管病学进展,2020,(9):903.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.004]
ZHANG Xin,GUO Yifang.Potential Mechanisms of Sodium-glucose Co-transporter 2 Inhibitor-related Cardiovascular Benefits[J].Advances in Cardiovascular Diseases,2020,(8):903.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.004]
[15]王景如 刘素云.改善2型糖尿病患者的不良心血管结局:GLP-1RA与SGLT-2i可联合应用吗?[J].心血管病学进展,2022,(8):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]
WANG Jingru,LIU suyun.Improve Adverse Cardiovascular Outcomes in Patients with Type 2 DiabetesCan GLP-1RA be Combined with SGLT-2i[J].Advances in Cardiovascular Diseases,2022,(8):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]