[1]李睿宁 刘艺硕 李忠衡 孙丽杰.细胞外囊泡在心血管疾病中的应用[J].心血管病学进展,2025,(1):6.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.002]
 LI Ruining,LIU Yishuo,LI Zhongheng,et al.Application of Extracellular Vesicles in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2025,(1):6.[doi:10.16806/j.cnki.issn.1004-3934.2025.01.002]
点击复制

细胞外囊泡在心血管疾病中的应用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2025年1期
页码:
6
栏目:
综述
出版日期:
2025-01-25

文章信息/Info

Title:
Application of Extracellular Vesicles in Cardiovascular Disease
作者:
李睿宁1 刘艺硕 2 李忠衡 1 孙丽杰 1
(1.北京大学第三医院心内科 卫生部心血管分子生物学与调节肽重点实验室,北京 100191;2.北京大学医学部,北京 100191)
Author(s):
LI Ruining1LIU Yishuo2LI Zhongheng1SUN Lijie1
(1. Department of Cardiology,Peking University Third Hospital,NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides,Beijing 100191,China; 2. Peking University Health Science Center,Beijing 100191,China)
关键词:
细胞外囊泡心血管疾病生物标志物
Keywords:
Extracellular vesicleCardiovascular diseaseBiomarker
DOI:
10.16806/j.cnki.issn.1004-3934.2025.01.002
摘要:
心血管疾病(CVD)位居中国城乡居民疾病死亡构成比之首。细胞外囊泡(EV)通过运载生物活性物质参与多种CVD的病理生理机制,并在细胞通讯中发挥重要作用。在精准医学的时代背景下,EV已逐渐成为CVD诊断、预后、治疗的生物标志物。现对EV在CVD中的研究进展及应用现状进行综述,以期为CVD的基础研究及临床应用提供新的视角和思路。
Abstract:
Cardiovascular disease(CVD) is the leading cause of death among urban and rural residents in China. Extracellular vesicle(EV) is involved in various pathophysiological mechanisms of CVD and plays an important role in cell communication by carrying bioactive substances. In the era of precision medicine,EV has gradually become a biomarker for the diagnosis,prognosis and treatment of CVD. This paper reviews the research progress and application of EV in CVD,in order to provide new perspectives and ideas for the basic research and clinical application of CVD

参考文献/References:

[1] Huda MN,Nafiujjaman M,Deaguero IG,et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery:progress in clinical and preclinical applications[J]. ACS Biomater Sci Eng,2021,7(6):2106-2149.

[2] Lu M,Yuan S,Li S,et al. The exosome-derived biomarker in atherosclerosis and its clinical application[J]. J Cardiovasc Transl Res,2019,12(1):68-74.

[3] Ling H,Guo Z,Du S,et al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis[J]. Biomarkers,2020,25(7):539-547.

[4] Zhou R,Wang L,Zhao G,et al. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure:Mega bio-roles of a nano bio-particle[J]. IUBMB Life,2020,72(12):2546-2562.

[5] Wang Y,Li C,Zhao R,et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics,2021,11(13):6315-6333.

[6] Bouchareychas L,Duong P,Covarrubias S,et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microrna cargo[J]. Cell Rep,2020,32(2):107881.

[7] Yan W,Li T,Yin T,et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation[J]. Theranostics,2020,10(23):10712-10728.

[8] Tang Y,Yang LJ,Liu H,et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis[J]. Cell Rep,2023,42(1):111948.

[9] Chen X,Chen S,Pang J,et al. Hepatic steatosis aggravates atherosclerosis via small extracellular vesicle-mediated inhibition of cellular cholesterol efflux[J]. J Hepatol,2023,79(6):1491-1501.

[10] Liao Z,Chen Y,Duan C,et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction[J]. Theranostics,2021,11(1):268-291.

[11] Dai Y,Wang S,Chang S,et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol,2020,142:65-79.

[12] Yuan W,Liang X,Liu Y,et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI [J]. Hypertens Res,2022,45(4):650-664.

[13] Wei G,Li C,Jia X,et al. Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway[J]. J Adv Res,2023,53:199-218.

[14] Ning Y,Huang P,Chen G,et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J]. BMC Med,2023,21(1):96.

[15] Sun J,Shen H,Shao L,et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J]. Stem Cell Res Ther,2020,11(1):373.

[16] Zhu W,Sun L,Zhao P,et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J]. J Nanobiotechnology,2021,19(1):61.

[17] Zhu D,Liu S,Huang K,et al. Intrapericardial exosome therapy dampens cardiac injury via activating Foxo3 [J]. Circ Res,2022,131(10):e135-e150.

[18] Song Y,Zhang C,Zhang J,et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction[J]. Theranostics,2019,9(8):2346-2360.

[19] Li Q,Xu Y,Lv K,et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates[J]. Sci Transl Med,2021,13(584):eabb0202.

[20] Osorio LA,Lozano M,Soto P,et al. Levels of small extracellular vesicles containing hERG-1 and Hsp47 as potential biomarkers for cardiovascular diseases[J]. Int J Mol Sci,2024,25(9):4913.

[21] Hua CC,Liu XM,Liang LR,et al. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J]. Front Cardiovasc Med,2021,8:784044.

[22] Li J,Salvador AM,Li G,et al. MiR-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res,2021,128(1):e1-e23.

[23] Li X,la Salvia S,Liang Y,et al. Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart [J]. Circulation,2023,148(5):405-425.

[24] Ikeda G,Santoso MR,Tada Y,et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium[J]. J Am Coll Cardiol,2021,77(8):1073-1088.

[25] Menasché P,Renault NK,Hagège A,et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report[J]. EBioMedicine,2024,103:105145.

[26] Ernault AC,de Winter R,Fabrizi B,et al. MicroRNAs in extracellular vesicles released from epicardial adipose tissue promote arrhythmogenic conduction slowing[J]. Heart Rhythm O2,2023,4(12):805-814.

[27] Siwaponanan P,Kaewkumdee P,Phromawan W,et al. Increased expression of six-large extracellular vesicle-derived miRNAs signature for nonvalvular atrial fibrillation[J]. J Transl Med,2022,20(1):4.

[28] Kang JY,Mun D,Kim H,et al. Serum exosomal long noncoding RNAs as a diagnostic biomarker for atrial fibrillation[J]. Heart Rhythm,2022,19(9):1450-1458.

[29] XU L,FAN Y,WU L,et al. Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation[J]. Cardiovasc Ther,2022,2022:2687807.

[30] Liu L,Chen Y,Shu J,et al. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis[J]. J Thorac Dis,2020,12(10):5617-5627.

[31] Roura S,Gámez-Valero A,Lupón J,et al. Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy[J]. Lab Invest,2018,98(10):1291-1299.

[32] Rizzuto AS,Faggiano A,Macchi C,et al. Extracellular vesicles in cardiomyopathies:a narrative review[J]. Heliyon,2024,10(1):e23765.

[33] Ye R,Lin Q,Xiao W,et al. miR-150-5p in neutrophil-derived extracellular vesicles associated with sepsis-induced cardiomyopathy in septic patients[J]. Cell Death Discov,2023,9(1):19.

[34] Zhuang L,Xia W,Chen D,et al. Exosomal lncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p[J]. J Nanobiotechnology,2020,18(1):157.

[35] Lin YN,Mesquita T,Sanchez L,et al. Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice[J]. Eur Heart J,2021,42(35):3558-3571.

[36] Beetler DJ,Bruno KA,Watkins MM,et al. Reconstituted extracellular vesicles from human platelets decrease viral myocarditis in mice[J]. Small,2023,19(49):e2303317.

[37] Adamova P,Lotto RR,Powell AK,et al. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery[J]. J Mol Med(Berl),2023,101(1-2):65-81.

[38] Salazar-Puerta AI,Kordowski M,Cuellar-Gaviria TZ,et al. Engineered extracellular vesicle-based therapies for valvular heart disease[J]. Cell Mol Bioeng,2023,16(4):309-324.

[39] Verbree-Willemsen L,Zhang YN,Ibrahim I,et al. Extracellular vesicle Cystatin C and CD14 are associated with both renal dysfunction and heart failure[J]. ESC Heart Fail,2020,7(5):2240-2249.

[40] Gan L,Liu D,Xie D,et al. Ischemic heart-derived small extracellular vesicles impair adipocyte function[J]. Circ Res,2022,130(1):48-66.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(1):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(1):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(1):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(1):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
[11]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
 UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(1):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]

更新日期/Last Update: 2025-02-26