参考文献/References:
[1] Huda MN,Nafiujjaman M,Deaguero IG,et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery:progress in clinical and preclinical applications[J]. ACS Biomater Sci Eng,2021,7(6):2106-2149.
[2] Lu M,Yuan S,Li S,et al. The exosome-derived biomarker in atherosclerosis and its clinical application[J]. J Cardiovasc Transl Res,2019,12(1):68-74.
[3] Ling H,Guo Z,Du S,et al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis[J]. Biomarkers,2020,25(7):539-547.
[4] Zhou R,Wang L,Zhao G,et al. Circulating exosomal microRNAs as emerging non-invasive clinical biomarkers in heart failure:Mega bio-roles of a nano bio-particle[J]. IUBMB Life,2020,72(12):2546-2562.
[5] Wang Y,Li C,Zhao R,et al. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction[J]. Theranostics,2021,11(13):6315-6333.
[6] Bouchareychas L,Duong P,Covarrubias S,et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microrna cargo[J]. Cell Rep,2020,32(2):107881.
[7] Yan W,Li T,Yin T,et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation[J]. Theranostics,2020,10(23):10712-10728.
[8] Tang Y,Yang LJ,Liu H,et al. Exosomal miR-27b-3p secreted by visceral adipocytes contributes to endothelial inflammation and atherogenesis[J]. Cell Rep,2023,42(1):111948.
[9] Chen X,Chen S,Pang J,et al. Hepatic steatosis aggravates atherosclerosis via small extracellular vesicle-mediated inhibition of cellular cholesterol efflux[J]. J Hepatol,2023,79(6):1491-1501.
[10] Liao Z,Chen Y,Duan C,et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction[J]. Theranostics,2021,11(1):268-291.
[11] Dai Y,Wang S,Chang S,et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway[J]. J Mol Cell Cardiol,2020,142:65-79.
[12] Yuan W,Liang X,Liu Y,et al. Mechanism of miR-378a-3p enriched in M2 macrophage-derived extracellular vesicles in cardiomyocyte pyroptosis after MI [J]. Hypertens Res,2022,45(4):650-664.
[13] Wei G,Li C,Jia X,et al. Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway[J]. J Adv Res,2023,53:199-218.
[14] Ning Y,Huang P,Chen G,et al. Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J]. BMC Med,2023,21(1):96.
[15] Sun J,Shen H,Shao L,et al. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J]. Stem Cell Res Ther,2020,11(1):373.
[16] Zhu W,Sun L,Zhao P,et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J]. J Nanobiotechnology,2021,19(1):61.
[17] Zhu D,Liu S,Huang K,et al. Intrapericardial exosome therapy dampens cardiac injury via activating Foxo3 [J]. Circ Res,2022,131(10):e135-e150.
[18] Song Y,Zhang C,Zhang J,et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction[J]. Theranostics,2019,9(8):2346-2360.
[19] Li Q,Xu Y,Lv K,et al. Small extracellular vesicles containing miR-486-5p promote angiogenesis after myocardial infarction in mice and nonhuman primates[J]. Sci Transl Med,2021,13(584):eabb0202.
[20] Osorio LA,Lozano M,Soto P,et al. Levels of small extracellular vesicles containing hERG-1 and Hsp47 as potential biomarkers for cardiovascular diseases[J]. Int J Mol Sci,2024,25(9):4913.
[21] Hua CC,Liu XM,Liang LR,et al. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases[J]. Front Cardiovasc Med,2021,8:784044.
[22] Li J,Salvador AM,Li G,et al. MiR-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res,2021,128(1):e1-e23.
[23] Li X,la Salvia S,Liang Y,et al. Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart [J]. Circulation,2023,148(5):405-425.
[24] Ikeda G,Santoso MR,Tada Y,et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium[J]. J Am Coll Cardiol,2021,77(8):1073-1088.
[25] Menasché P,Renault NK,Hagège A,et al. First-in-man use of a cardiovascular cell-derived secretome in heart failure. Case report[J]. EBioMedicine,2024,103:105145.
[26] Ernault AC,de Winter R,Fabrizi B,et al. MicroRNAs in extracellular vesicles released from epicardial adipose tissue promote arrhythmogenic conduction slowing[J]. Heart Rhythm O2,2023,4(12):805-814.
[27] Siwaponanan P,Kaewkumdee P,Phromawan W,et al. Increased expression of six-large extracellular vesicle-derived miRNAs signature for nonvalvular atrial fibrillation[J]. J Transl Med,2022,20(1):4.
[28] Kang JY,Mun D,Kim H,et al. Serum exosomal long noncoding RNAs as a diagnostic biomarker for atrial fibrillation[J]. Heart Rhythm,2022,19(9):1450-1458.
[29] XU L,FAN Y,WU L,et al. Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation[J]. Cardiovasc Ther,2022,2022:2687807.
[30] Liu L,Chen Y,Shu J,et al. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis[J]. J Thorac Dis,2020,12(10):5617-5627.
[31] Roura S,Gámez-Valero A,Lupón J,et al. Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy[J]. Lab Invest,2018,98(10):1291-1299.
[32] Rizzuto AS,Faggiano A,Macchi C,et al. Extracellular vesicles in cardiomyopathies:a narrative review[J]. Heliyon,2024,10(1):e23765.
[33] Ye R,Lin Q,Xiao W,et al. miR-150-5p in neutrophil-derived extracellular vesicles associated with sepsis-induced cardiomyopathy in septic patients[J]. Cell Death Discov,2023,9(1):19.
[34] Zhuang L,Xia W,Chen D,et al. Exosomal lncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p[J]. J Nanobiotechnology,2020,18(1):157.
[35] Lin YN,Mesquita T,Sanchez L,et al. Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice[J]. Eur Heart J,2021,42(35):3558-3571.
[36] Beetler DJ,Bruno KA,Watkins MM,et al. Reconstituted extracellular vesicles from human platelets decrease viral myocarditis in mice[J]. Small,2023,19(49):e2303317.
[37] Adamova P,Lotto RR,Powell AK,et al. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery[J]. J Mol Med(Berl),2023,101(1-2):65-81.
[38] Salazar-Puerta AI,Kordowski M,Cuellar-Gaviria TZ,et al. Engineered extracellular vesicle-based therapies for valvular heart disease[J]. Cell Mol Bioeng,2023,16(4):309-324.
[39] Verbree-Willemsen L,Zhang YN,Ibrahim I,et al. Extracellular vesicle Cystatin C and CD14 are associated with both renal dysfunction and heart failure[J]. ESC Heart Fail,2020,7(5):2240-2249.
[40] Gan L,Liu D,Xie D,et al. Ischemic heart-derived small extracellular vesicles impair adipocyte function[J]. Circ Res,2022,130(1):48-66.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(1):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(1):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(1):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(1):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(1):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
[11]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(1):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]