参考文献/References:
[1] Mendelson MM. Epigenetic age acceleration:a biological doomsday clock for cardiovascular disease?[J]. Circ Genom Precis Med,2018,11(3):e002089.
[2] Jiang S,Guo Y. Epigenetic clock:DNA methylation in aging[J]. Stem Cells Int,2020,2020:1047896.
[3] Horvath S,Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet,2018,19(6):371-384.
[4] Xiao FH,Kong QP,Perry B,et al. Progress on the role of DNA methylation in aging and longevity[J]. Brief Funct Genomics,2016,15(6):454-459.
[5] Teschendorff AE,Menon U,Gentry-Maharaj A,et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer[J]. Genome Res,2010,20(4):440-446.
[6] Sehl ME,Henry JE,Storniolo AM,et al. DNA methylation age is elevated in breast tissue of healthy women[J]. Breast Cancer Res Treat,2017,164(1):209-219.
[7] Zou H,Hastie T. Regularization and variable selection via the elastic net[J]. J Roy Statist Soc Ser B,2005,67(2):301-320.
[8] Bocklandt S,Lin W,Sehl ME,et al. Epigenetic predictor of age[J]. PLoS One,2011,6(6):e14821.
[9] Hannum G,Guinney J,Zhao L,et al. Genome-wide methylation profiles reveal quantitative views of human aging rates[J]. Mol Cell,2013,49(2):359-367.
[10] D’Aquila P,Montesanto A,de Rango F,et al. Epigenetic signature:implications for mitochondrial quality control in human aging[J]. Aging(Albany NY),2019,11(4):1240-1251.
[11] Horvath S,Oshima J,Martin GM,et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies[J]. Aging(Albany NY),2018,10(7):1758-1775.
[12] Zbie?-Piekarska R,Spólnicka M,Kupiec T,et al. Development of a forensically useful age prediction method based on DNA methylation analysis[J]. Forensic Sci Int Genet,2015,17:173-179.
[13] Levine ME,Lu AT,Quach A,et al. An epigenetic biomarker of aging for lifespan and healthspan[J]. Aging(Albany NY),2018,10(4):573-591.
[14] Gale CR,Marioni RE,Harris SE,et al. DNA methylation and the epigenetic clock in relation to physical frailty in older people:the Lothian Birth Cohort 1936[J]. Clin Epigenetics,2018,10(1):101.
[15] Chen BH,Marioni RE,Colicino E,et al. DNA methylation-based measures of biological age:meta-analysis predicting time to death[J]. Aging(Albany NY),2016,8(9):1844-1865.
[16] Chen BH,Carty CL,Kimura M,et al. Leukocyte telomere length,T cell composition and DNA methylation age[J]. Aging(Albany NY),2017,9(9):1983-1995.
[17] Horvath S. DNA methylation age of human tissues and cell types[J]. Genome Biol,2013,14(10):R115.
[18] Ong CT,Corces VG. CTCF:an architectural protein bridging genome topology and function[J]. Nat Rev Genet,2014,15(4):234-246.
[19] Wang Y,Karlsson R,Lampa E,et al. Epigenetic influences on aging:a longitudinal genome-wide methylation study in old Swedish twins[J]. Epigenetics,2018,13(9):975-987.
[20] Field AE,Robertson NA,Wang T,et al. DNA methylation clocks in aging:categories,causes,and consequences[J]. Mol Cell,2018,71(6):882-895.
[21] Takahashi K,Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
[22] Ocampo A,Reddy P,Martinez-Redondo P,et al. Invivo amelioration of age-associated hallmarks by partial reprogramming[J]. Cell,2016,167(7):1719-1733.e1712.
[23] Lu Y,Brommer B,Tian X,et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature,2020,588(7836):124-129.
[24] Dimopoulos T,Iyer S,Rodriguez LR,et al. The Ying and the Yang:compensatory UPR signaling responses observed in an in-vitro model expressing clinical mutant surfactant protein C isoforms[J]. FASEB J,2022,36(suppl 1).https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.R3541.
[25] Fernández-Sanlés A,Sayols-Baixeras S,Subirana I,et al. Association between DNA methylation and coronary heart disease or other atherosclerotic events:a systematic review[J]. Atherosclerosis,2017,263:325-333.
[26] Chaudhary M,Chaudhary S. Unravelling the lesser known facets of angiotensin Ⅱtype 1 receptor[J]. Curr Hypertens Rep,2017,19(1):1.
[27] Pepin ME,Ha CM,Crossman DK,et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure[J]. Lab Invest,2019,99(3):371-386.
[28] Wallace RG,Twomey LC,Custaud MA,et al. The role of epigenetics in cardiovascular health and ageing:a focus on physical activity and nutrition[J]. Mech Ageing Dev,2018,174:76-85.
[29] No authors listed. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33). UK Prospective Diabetes Study(UKPDS) Group[J]. Lancet,1998,352(9131):837-853.
[30] Lind L,Ingelsson E,Sundstr?m J,et al. Methylation-based estimated biological age and cardiovascular disease[J]. Eur J Clin Invest,2018,48(2).DOI:10.1111/eci.12872.?Epub 2017 Dec 27.
[31] Perna L,Zhang Y,Mons U,et al. Epigenetic age acceleration predicts cancer,cardiovascular,and all-cause mortality in a German case cohort[J]. Clin Epigenetics,2016,8:64.
[32] Roetker NS,Pankow JS,Bressler J,et al. Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC Study(Atherosclerosis Risk in Communities)[J]. Circ Genom Precis Med,2018,11(3):e001937.
[33] Wang M,Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries[J]. J Mol Cell Cardiol,2015,83:101-111.
[34] Yun MH. Cellular senescence in tissue repair:every cloud has a silver lining[J]. Int J Dev Biol,2018,62(6-7-8):591-604.
[35] Anderson R,Lagnado A,Maggiorani D,et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence[J]. EMBO J,2019,38(5):e100492.
[36] Leri A,Franco S,Zacheo A,et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation[J]. EMBO J,2003,22(1):131-139.
[37] Movassagh M,Choy MK,Knowles DA,et al. Distinct epigenomic features in end-stage failing human hearts[J]. Circulation,2011,124(22):2411-2422.
[38] Xiao D,Dasgupta C,Chen M,et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats[J]. Cardiovasc Res,2014,101(3):373-382.
[39] Dorn LE,Lasman L,Chen J,et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation,2019,139(4):533-545.
[40] Yu HT,Park S,Shin EC,et al. T cell senescence and cardiovascular diseases[J]. Clin Exp Med,2016,16(3):257-263.
[41] Beerman I,Bock C,Garrison BS,et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging[J]. Cell Stem Cell,2013,12(4):413-425.
[42] Lu AT,Xue L,Salfati EL,et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT[J]. Nat Commun,2018,9(1):387.
[43] Pisarenko OI,Studneva IM,Veselova OM. Modified N-terminal fragments of galanin:cardioprotective properties and mechanisms of action[J]. Biochemistry(Mosc),2021,86(10):1342-1351.
[44] Yuan T,Jiao Y,de Jong S,et al. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging[J]. PLoS Genet,2015,11(2):e1004996.
[45] Franzke B,Neubauer O,Wagner KH. Super DNAging-New insights into DNA integrity,genome stability and telomeres in the oldest old[J]. Mutat Res Rev Mutat Res,2015,766:48-57.
[46] Said MA,Verweij N,van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study[J]. JAMA Cardiol,2018,3(8):693-702.
[47] Hahn O,Gr?nke S,Stubbs TM,et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism[J]. Genome Biol,2017,18(1):56.
[48] Siemelink MA,van der Laan SW,Haitjema S,et al. Smoking is associated to DNA methylation in atherosclerotic carotid lesions[J]. Circ Genom Precis Med,2018,11(9):e002030.
[49] Fernández-Sanlés A,Sayols-Baixeras S,Curcio S,et al. DNA methylation and age-independent cardiovascular risk,an epigenome-wide approach:the REGICOR study(REgistre GIroní del COR)[J]. Arterioscler Thromb Vasc Biol,2018,38(3):645-652.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(7):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(7):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[3]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(7):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[4]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[5]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[6]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[7]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[8]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[9]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[10]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]