[1]傅义程 张福春 刘慧琳.表观遗传年龄与衰老和心血管疾病的研究进展[J].心血管病学进展,2022,(7):590-594.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 FU Yicheng,ZHANG Fuchun,LIU Huilin.Epigenetic Age with Senescence and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(7):590-594.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
点击复制

表观遗传年龄与衰老和心血管疾病的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年7期
页码:
590-594
栏目:
综述
出版日期:
2022-07-25

文章信息/Info

Title:
Epigenetic Age with Senescence and Cardiovascular Disease
文章编号:
202205083
作者:
傅义程 张福春 刘慧琳
?北京大学第三医院老年内科,北京 100191)
Author(s):
FU YichengZHANG FuchunLIU Huilin
(Geriatric Department,Peking University Third Hospital,Beijing 100191,China)
关键词:
表观遗传学心血管疾病衰老DNA甲基化生物标志物
DOI:
10.16806/j.cnki.issn.1004-3934.2022.07.000
摘要:
衰老作为心血管疾病的重要风险因素,其相关致病机制研究一直受到广泛重视,寻找能准确地评估和预测人体衰老程度的标志物是生物医学领域的研究热点。表观遗传调控被证实参与了多种心血管系统疾病的致病机制。近年来,发现利用人体DNA甲基化图谱构建的DNA甲基化年龄, 也叫表观遗传时钟,可准确地评估个体生物年龄并评估组织器官功能衰退程度。表观遗传年龄被证实与衰老相关心血管疾病风险密切相关,有望成为新的临床生物标志物用于心血管患者的个体化治疗。现就表观遗传年龄的发展、与衰老和心血管疾病的关系、研究现状及应用做详细阐述。

参考文献/References:

[1] Mendelson MM. Epigenetic age acceleration:a biological doomsday clock for cardiovascular disease?[J]. Circ Genom Precis Med,2018,11(3):e002089.

[2] Jiang S,Guo Y. Epigenetic clock:DNA methylation in aging[J]. Stem Cells Int,2020,2020:1047896.

[3] Horvath S,Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nat Rev Genet,2018,19(6):371-384.

[4] Xiao FH,Kong QP,Perry B,et al. Progress on the role of DNA methylation in aging and longevity[J]. Brief Funct Genomics,2016,15(6):454-459.

[5] Teschendorff AE,Menon U,Gentry-Maharaj A,et al. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer[J]. Genome Res,2010,20(4):440-446.

[6] Sehl ME,Henry JE,Storniolo AM,et al. DNA methylation age is elevated in breast tissue of healthy women[J]. Breast Cancer Res Treat,2017,164(1):209-219.

[7] Zou H,Hastie T. Regularization and variable selection via the elastic net[J]. J Roy Statist Soc Ser B,2005,67(2):301-320.

[8] Bocklandt S,Lin W,Sehl ME,et al. Epigenetic predictor of age[J]. PLoS One,2011,6(6):e14821.

[9] Hannum G,Guinney J,Zhao L,et al. Genome-wide methylation profiles reveal quantitative views of human aging rates[J]. Mol Cell,2013,49(2):359-367.

[10] D’Aquila P,Montesanto A,de Rango F,et al. Epigenetic signature:implications for mitochondrial quality control in human aging[J]. Aging(Albany NY),2019,11(4):1240-1251.

[11] Horvath S,Oshima J,Martin GM,et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies[J]. Aging(Albany NY),2018,10(7):1758-1775.

[12] Zbie?-Piekarska R,Spólnicka M,Kupiec T,et al. Development of a forensically useful age prediction method based on DNA methylation analysis[J]. Forensic Sci Int Genet,2015,17:173-179.

[13] Levine ME,Lu AT,Quach A,et al. An epigenetic biomarker of aging for lifespan and healthspan[J]. Aging(Albany NY),2018,10(4):573-591.

[14] Gale CR,Marioni RE,Harris SE,et al. DNA methylation and the epigenetic clock in relation to physical frailty in older people:the Lothian Birth Cohort 1936[J]. Clin Epigenetics,2018,10(1):101.

[15] Chen BH,Marioni RE,Colicino E,et al. DNA methylation-based measures of biological age:meta-analysis predicting time to death[J]. Aging(Albany NY),2016,8(9):1844-1865.

[16] Chen BH,Carty CL,Kimura M,et al. Leukocyte telomere length,T cell composition and DNA methylation age[J]. Aging(Albany NY),2017,9(9):1983-1995.

[17] Horvath S. DNA methylation age of human tissues and cell types[J]. Genome Biol,2013,14(10):R115.

[18] Ong CT,Corces VG. CTCF:an architectural protein bridging genome topology and function[J]. Nat Rev Genet,2014,15(4):234-246.

[19] Wang Y,Karlsson R,Lampa E,et al. Epigenetic influences on aging:a longitudinal genome-wide methylation study in old Swedish twins[J]. Epigenetics,2018,13(9):975-987.

[20] Field AE,Robertson NA,Wang T,et al. DNA methylation clocks in aging:categories,causes,and consequences[J]. Mol Cell,2018,71(6):882-895.

[21] Takahashi K,Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.

[22] Ocampo A,Reddy P,Martinez-Redondo P,et al. Invivo amelioration of age-associated hallmarks by partial reprogramming[J]. Cell,2016,167(7):1719-1733.e1712.

[23] Lu Y,Brommer B,Tian X,et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature,2020,588(7836):124-129.

[24] Dimopoulos T,Iyer S,Rodriguez LR,et al. The Ying and the Yang:compensatory UPR signaling responses observed in an in-vitro model expressing clinical mutant surfactant protein C isoforms[J]. FASEB J,2022,36(suppl 1).https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.R3541.

[25] Fernández-Sanlés A,Sayols-Baixeras S,Subirana I,et al. Association between DNA methylation and coronary heart disease or other atherosclerotic events:a systematic review[J]. Atherosclerosis,2017,263:325-333.

[26] Chaudhary M,Chaudhary S. Unravelling the lesser known facets of angiotensin Ⅱtype 1 receptor[J]. Curr Hypertens Rep,2017,19(1):1.

[27] Pepin ME,Ha CM,Crossman DK,et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure[J]. Lab Invest,2019,99(3):371-386.

[28] Wallace RG,Twomey LC,Custaud MA,et al. The role of epigenetics in cardiovascular health and ageing:a focus on physical activity and nutrition[J]. Mech Ageing Dev,2018,174:76-85.

[29] No authors listed. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33). UK Prospective Diabetes Study(UKPDS) Group[J]. Lancet,1998,352(9131):837-853.

[30] Lind L,Ingelsson E,Sundstr?m J,et al. Methylation-based estimated biological age and cardiovascular disease[J]. Eur J Clin Invest,2018,48(2).DOI:10.1111/eci.12872.?Epub 2017 Dec 27.

[31] Perna L,Zhang Y,Mons U,et al. Epigenetic age acceleration predicts cancer,cardiovascular,and all-cause mortality in a German case cohort[J]. Clin Epigenetics,2016,8:64.

[32] Roetker NS,Pankow JS,Bressler J,et al. Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC Study(Atherosclerosis Risk in Communities)[J]. Circ Genom Precis Med,2018,11(3):e001937.

[33] Wang M,Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries[J]. J Mol Cell Cardiol,2015,83:101-111.

[34] Yun MH. Cellular senescence in tissue repair:every cloud has a silver lining[J]. Int J Dev Biol,2018,62(6-7-8):591-604.

[35] Anderson R,Lagnado A,Maggiorani D,et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence[J]. EMBO J,2019,38(5):e100492.

[36] Leri A,Franco S,Zacheo A,et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation[J]. EMBO J,2003,22(1):131-139.

[37] Movassagh M,Choy MK,Knowles DA,et al. Distinct epigenomic features in end-stage failing human hearts[J]. Circulation,2011,124(22):2411-2422.

[38] Xiao D,Dasgupta C,Chen M,et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats[J]. Cardiovasc Res,2014,101(3):373-382.

[39] Dorn LE,Lasman L,Chen J,et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy[J]. Circulation,2019,139(4):533-545.

[40] Yu HT,Park S,Shin EC,et al. T cell senescence and cardiovascular diseases[J]. Clin Exp Med,2016,16(3):257-263.

[41] Beerman I,Bock C,Garrison BS,et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging[J]. Cell Stem Cell,2013,12(4):413-425.

[42] Lu AT,Xue L,Salfati EL,et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT[J]. Nat Commun,2018,9(1):387.

[43] Pisarenko OI,Studneva IM,Veselova OM. Modified N-terminal fragments of galanin:cardioprotective properties and mechanisms of action[J]. Biochemistry(Mosc),2021,86(10):1342-1351.

[44] Yuan T,Jiao Y,de Jong S,et al. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging[J]. PLoS Genet,2015,11(2):e1004996.

[45] Franzke B,Neubauer O,Wagner KH. Super DNAging-New insights into DNA integrity,genome stability and telomeres in the oldest old[J]. Mutat Res Rev Mutat Res,2015,766:48-57.

[46] Said MA,Verweij N,van der Harst P. Associations of combined genetic and lifestyle risks with incident cardiovascular disease and diabetes in the UK Biobank Study[J]. JAMA Cardiol,2018,3(8):693-702.

[47] Hahn O,Gr?nke S,Stubbs TM,et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism[J]. Genome Biol,2017,18(1):56.

[48] Siemelink MA,van der Laan SW,Haitjema S,et al. Smoking is associated to DNA methylation in atherosclerotic carotid lesions[J]. Circ Genom Precis Med,2018,11(9):e002030.

[49] Fernández-Sanlés A,Sayols-Baixeras S,Curcio S,et al. DNA methylation and age-independent cardiovascular risk,an epigenome-wide approach:the REGICOR study(REgistre GIroní del COR)[J]. Arterioscler Thromb Vasc Biol,2018,38(3):645-652.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(7):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]陈炜,许贞蓉.表观遗传学与代谢性心血管疾病的研究进展[J].心血管病学进展,2019,(6):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
 CHEN Wei,XU Zhenrong.Epigenetics and Cardiometabolic Disease[J].Advances in Cardiovascular Diseases,2019,(7):902.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.016]
[3]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(7):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[4]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[5]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[6]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[7]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[8]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[9]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[10]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]

更新日期/Last Update: 2022-08-22