[1]彭韵朴 周珏珉.碳纳米材料在心血管治疗方面的应用与挑战[J].心血管病学进展,2022,(4):352-356.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.016]
 PENG Yunpu,ZHOU Juemin.Carbon Nanomaterials for Cardiovascular Therapy?romises and Challenges[J].Advances in Cardiovascular Diseases,2022,(4):352-356.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.016]
点击复制

碳纳米材料在心血管治疗方面的应用与挑战()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年4期
页码:
352-356
栏目:
综述
出版日期:
2022-04-25

文章信息/Info

Title:
Carbon Nanomaterials for Cardiovascular Therapy?romises and Challenges
作者:
彭韵朴 周珏珉
(遂宁市中心医院心脏电生理室,四川 遂宁 629000)
Author(s):
PENG YunpuZHOU Juemin
?Department of Cardiac ElectrophysiologySuining Center HospitalSuining 629000SichuanChina)
关键词:
碳纳米材料心血管疾病石墨烯心脏组织工程
Keywords:
Carbon nanomaterialsCardiovascular diseaseGrapheneCardiac tissue engineering
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.016
摘要:
心血管疾病是严重威胁全球人类生命健康的头号杀手。心脏病发作和卒中会导致心血管不可逆转的组织损伤,对此现有的治疗方案仅限于“损伤控制”,而不是组织修复。纳米材料特别是碳纳米材料(包括石墨烯、碳纳米管、纳米金刚石、富勒烯和其他纳米碳同素异形体)的快速发展为心血管功能的恢复治疗提供了契机。现就近年来主要碳纳米材料在心血管疾病领域的研究进展进行综述。
Abstract:
Cardiovascular diseases threatening human health seriously are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The current treatment strategy is “damage-control” rather than tissue repair. The rapid development of nanomaterials,especially carbon nanomaterials (CNMs) including graphenes,carbon nanotubes,fullerenes and other nanocarbon allotropes, provides an opportunity for the recovery of cardiovascular function. In this paper we review the research progress of major CNMs in the field of cardiovascular diseases in recent years.

参考文献/References:

[1].中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志,2021,36(6):521-545.
[2].赵冬. 心血管疾病危险因素的研究:过去、现在和未来[J]. 中国循环杂志,2021,36(1):1-3.
[3].Moosa AA,Abed MS. Graphene preparation and graphite exfoliation[J]. Turk J Chem,2021,45(3):493-519.
[4].Suvarnaphaet P,Pechprasarn S. Graphene-based materials for biosensors:a review[J]. Sensors(Basel),2017,17(10):2161.
[5].Venkataraman A,Amadi EV,Chen Y,et al. Carbon n anotube assembly and integration for applications[J]. Nanoscale Res L ett,2019,14(1):220.
[6].[6] Kaya D,Kü?ükada K,Alemdar N. Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films[J]. Carbohydr Polym,2019,215:189-197.
[7].[7] Paul A,Hasan A,Kindi HA,et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair[J]. ACS Nano,2014,8(8):8050-8062.
[8].[8] Masotti A,Miller MR,Celluzzi A,et al. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes[J]. Nanomedicine,2016,12(6):1511-1522.
[9]. [9] Ul Haq A,Carotenuto F,di Nardo P,et al. Extrinsically conductive nanomaterials for cardiac tissue engineering applications[J]. Micromachines (Basel),2021,12(8):914.
[10].[10]Hao T,Zhou J,Lü S,et al. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression[J]. Int J Nanomedicine,2016,11:269-283.
[11].[11]Demirbakan B,Kemal Sezgintürk M. A novel ultrasensitive immunosensor based on disposable graphite paper electrodes for troponin T detection in cardiovascular disease[J]. Talanta,2020,213:120779.
[12].[12]Chauhan D,Pooja,Nirbhaya V,et al. Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular disease detection[J]. Microchem J,2020,155:104697.
[13].[13]Freitas TA,Mattos AB,Silva BVM,et al. Amino-functionalization of carbon nanotubes by using a factorial design:human cardiac troponin T immunosensing application[J]. BioMed Res Int,2014,2014:929786.
[14].[14]Eissa S,Almusharraf AY,Zourob M. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes[J]. Mater Sci Eng C Mater Biol Appl,2019,101:423-430.
[15].[15] Gerstenhaber JA,Barone FC,Marcinkiewicz C,et al. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part Ⅱ)[J]. Int J Nanomedicine,2017,12:8471-8482.
[16].[16]Wang C,Li J,Kang M,et al. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I[J]. Anal Chim Acta,2021,1141:110-119.
[17].[17]Nazari H,Azadi S,Hatamie S,et al. Fabrication of graphene-silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering[J]. Polym Adv Technol,2019,30(8):2086-2099.
[18].[18]Bao R,Tan S,Liang S,et al. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials,2017,122:63-71.
[19]. [19]Ahadian S,Davenport HL,Estili M,et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering[J]. Acta Biomater,2017,52:81-91.
[20].[20]Kharaziha M,Shin SR,Nikkhah M,et al. T ough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs[J]. Biomaterials,2014,35(26):7346-7354.
[21].[21]Hao T,Li J,Yao F,et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in Brown adipose-derived stem cells and cardiac repair[J]. ACS Nano,2017,11(6):5474-5488.
[22].[22]Malanagahalli S,Murera D,Martín C,et al. Few layer graphene does not affect cellular homeostasis of mouse macrophages[J]. Nanomaterials(Basel),2020,10(2):228.
[23].[23]Han J,Kim YS,Lim MY,et al. Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair[J]. ACS Nano,2018,12(2):1959-1977.
[24].[24]Yuan X,Zhang X,Sun L,et al. Cellular toxicity and immunological effects of carbon-based nanomaterials[J]. Part Fibre Toxicol,2019,16(1):18.
[25].[25]Bunz H,Plankenhorn S,Klein R. Effect of buckminsterfullerenes on cells of the innate and adaptive immune system:an in vitro study with human peripheral blood mononuclear cells[J]. Int J Nanomedicine,2012,7:4571-4580.
[26].[26]Suarez-Kelly LP,Campbell AR,Rampersaud IV,et al. Fluorescent nanodiamonds engage innate immune effector cells:a potential vehicle for targeted anti-tumor immunotherapy[J]. N anomedicine,2017,13(3):909-920.
[27].[27]Madannejad R,Shoaie N,Jahanpeyma F,et al. Toxicity of carbon-based nanomaterials:reviewing recent reports in medical and biological systems[J]. Chem Biol Interact,2019,307:206-222.
[28].[28]Chen Z,Yu C,Khan IA,et al. Toxic effects of different-sized graphene oxide particles on zebrafish embryonic development[J]. Ecotoxicol Environ Saf,2020,197:110608.
[29].[29]刘永智,解立强,梁盛德,等. C60对细胞膜潜在生物毒性的分子动力学模拟[J].计算物理,2020,37(4):479-487.
[30].[30] Hansen SF,Lennquist A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern[J]. Nat Nanotechnol,2020,15(1):3-4.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(4):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(4):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(4):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

更新日期/Last Update: 2022-05-13