参考文献/References:
[1] Kolwicz Jr SC, Tian R. Glucose metabolism and cardiac hypertrophy[J]. Cardiovasc Res,2011,90(2):194-201.
[2] Cramariuc D, Gerdts E, Davidsen ES, et al. Myocardial deformation in aortic valve stenosis: relation to left ventricular geometry[J]. Heart,2010,96(2):106-112.
[3] Cioffi G, Faggiano P, Vizzardi E, et al. Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis[J]. Heart,2011,97(4): 301-307.
[4] Mureddu GF, Cioffi G, Stefenelli C, et al. Compensatory or inappropriate left ventricular mass in different models of left ventricular pressure overload:comparison between patients with aortic stenosis and arterial hypertension[J]. J Hypertens,2009, 27(3):642-649.
[5] Doenst T, Pytel G, Schrepper A, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload[J]. Cardiovasc Res,2010,86(3):461-470.
[6] Razeghi P,Young ME,Alcorn JL,et al.Metabolic gene expression in fetal and failing human heart[J]. Circulation,2001,104(24):2923-2931.
[7] Leong HS, Grist M, Parsons H, et al. Accelerated rates of glycolysis in the hypertrophied heart:are they a methodological artifact?[J]. Am J Physiol Endocrinol Metab,2002,282(5):E1039-E1045.
[8] Nascimben L, Ingwall JS, Lorell BH, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart[J]. Hypertension,2004,44(5):662-667.
[9] Tian R,Musi N,D'Agostino J, et al. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy[J]. Circulation,2001,104(14):1664-1669.
[10] Allard MF,Wambolt RB,Longnus SL,et al. Hypertrophied rat hearts are less responsive to the metabolic and functional effects of insulin[J]. Am J Physiol Endocrinol Metab,2000,279(3):E487-E493.
[11] Grifn JL, Donnell JM, White LT, et al. Postnatal expression and activity of the mitochondrial 2-oxoglutarate-malate carrier in intact hearts[J]. Am J Physiol Cell Physiol,2000,279(6):1704-1709.
[12] Dai DF, Johnson SC, Villarin JJ, et al. Mitochondrial oxidative stress mediates angiotensin Ⅱ-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure[J]. Circ Res,2011,108(7):837-846.
[13] Griffiths ER, Friehs I, Scherr E,et al. Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes cardiomyocyte apoptosis independent of oxidative stress[J]. J Thorac Cardiovasc Surg,2010,139(6):1609-1617.
[14] Gong G, Liu J, Liang P, et al. Oxidative capacity in failing hearts[J]. Am J Physiol Heart Circ Physiol,2003,285(2):H541-H548.
[15] Dai DF, Hsieh EJ, Liu Y, et al. Mitochondrial proteome remodelling in pressure overload-induced heart failure:the role of mitochondrial oxidative stress[J].Cardiovasc Res,2012,93(1):79-88.
[16] Bugger H, Schwarzer M, Chen D, et al. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure[J].Cardiovasc Res, 2010,85(2):376-384.
[17] Barger PM,Brandt JM,Leone TC,et al.Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth[J]. J Clin Invest,2000,105(12):1723-1730.
[18] Akki A,Smith K,Seymour AM. Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation[J]. Mol Cell Biochem,2008,311(1-2):215-224.
[19] Lam VH,Zhang L,Huqi A,et al. Activating PPARα prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts[J]. Circ Res,2015, 117(1):41-51.
[20] Meng RS, Pei ZH, Zhang AX, et al. AMPK activation enhances PPARa activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway[J].Arch Biochem Biophys,2011,511(1-2):1-7.
[21] 黄秋菊,黄金贤,罗佳妮,等. ERK1 /2 /PPARα/SCAD 信号途径对生理性和病理性心肌肥大的调控[J].中国病理生理杂志,2014,30(8):1427-1432.
[22] Hasumi Y, Baba M, Hasumi H, et al. Folliculin(Flcn)inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation[J]. Hum Mol Genet,2014, 23(21):5706-5719.
[23] Pillai VB, Samant S, Sundaresan NR, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3[J]. Nat Commun,2015,6:6656.
[24] Yu HJ,Tigchelaar W,Koonen DPY,et al. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes[J]. PLoS One,2013,8(11): e80815.
[25] Tigchelaar W, Yu HJ, de Jong AM, et al. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy[J]. Am J Physiol Cell Physiol,2015,308(2):C155-C163.
[26] Domenighetti AA, Danes VR, Curl CL, et al. Targeted GLUT-4 deciency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+)and proton ux dysregulation[J]. J Mol Cell Cardiol,2010,48(4):663-672.
[27] Hamilton DJ,Zhang A,Li S,et al.Combination of Angiotensin Ⅱ and L-NG-Nitroarginine methyl ester exacerbates mitochondrial dysfunction and oxidative stress to cause heart failure[J]. Am J Physiol Heart Circ Physiol,2016,310(6):H667-H680.
[28] Kobara M, Furumori-Yukiya A, Kitamura M, et al. Short-term caloric restriction suppresses cardiac oxidative stress and hypertrophy caused by chronic pressure overload[J]. J Card Fail,2015,21(8):656-666.
[29] Poornima I, Brown SB, Bhashyam S, et al. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat[J]. Circ Heart Fail, 2008,1(3):153-160.
[30] Vitale C, Wajngaten M, Sposato B, et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease[J]. Eur Heart J, 2004, 25(20):1814-1821.
[31] 张晶,王洪新,宋莹,等.黄芪甲苷抑制大鼠心肌肥厚及改善心肌能量代谢的作用观察[J]. 中成药, 2012, 34( 5): 924-928.
[32] 于妍,王硕仁,聂波,等.川芎嗪、缬沙坦及曲美他嗪对乳鼠肥大心肌细胞线粒体结构和能量代谢的影响[J]. 中西医结合心脑血管病杂志, 2012, 10(3): 321-324.
[33] 王燕飞,曹雪滨,徐淑乐,等.心复康口服液对慢性压力超负荷大鼠心肌能量代谢的影响[J].第三军医大学学报,2009,31(18): 1720-1723.
相似文献/References:
[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(3):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]公雪,综述,李晓燕,等.力竭运动对心肌组织结构及功能影响的研究进展[J].心血管病学进展,2016,(4):435.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.028]
GONG Xue,LI Xiaoyan.Research Progress of Effect of Exhaustive Exercise on Structure
and Function of Cardiac Muscle[J].Advances in Cardiovascular Diseases,2016,(3):435.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.028]
[3]高凯 苏艺婉 徐望 李智 谢扬 候钦.线粒体分裂蛋白Drp1与心血管疾病研究进展[J].心血管病学进展,2019,(8):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
GAO Kai,SU Yiwan,XU Wang,et al.Mitochondrial Mitotic Protein Drp1 and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(3):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
[4]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(3):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[5]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[6]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(3):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
[7]喜林强 孙华鑫 商鲁翔 汤宝鹏 周贤惠.心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展[J].心血管病学进展,2023,(10):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
XI Linqiang,SUN Huaxin,SHANG Luxiang,et al.Atrial Energy Metabolism Remodeling and Targeted Intervention of PPAR in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(3):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
[8]王洪伟,王贺,卢明凯,等.线粒体氧化应激在心房颤动电重构机制中的研究进展[J].心血管病学进展,2023,(12):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
WANG Hongwei,WANG He,LU Mingkai,et al.Research Progress of Mitochondrial Oxidative Stress in the Mechanism of?lectrical Remodeling of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(3):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
[9]刘小雨 庞树朝 江杨杨 王丽欣.线粒体动力相关蛋白1与动脉粥样硬化研究进展[J].心血管病学进展,2024,(1):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
LIU Xiaoyu,PANG Shuchao,JIANG Yangyang,et al.Dynamin-Related Protein 1 and Atherosclerosis[J].Advances in Cardiovascular Diseases,2024,(3):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
[10]李甜甜 亓秉超 陈亮 李妍.以线粒体为中心的调控网络在心血管疾病中的研究进展[J].心血管病学进展,2024,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]
LI Tiantian,QI Bingchao,CHEN Liang,et al.Mitochondria-Centered Regulatory Network in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2024,(3):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]