[1]刘小雨 庞树朝 江杨杨 王丽欣.线粒体动力相关蛋白1与动脉粥样硬化研究进展[J].心血管病学进展,2024,(1):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
 LIU Xiaoyu,PANG Shuchao,JIANG Yangyang,et al.Dynamin-Related Protein 1 and Atherosclerosis[J].Advances in Cardiovascular Diseases,2024,(1):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
点击复制

线粒体动力相关蛋白1与动脉粥样硬化研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年1期
页码:
70
栏目:
综述
出版日期:
2024-02-21

文章信息/Info

Title:
Dynamin-Related Protein 1 and Atherosclerosis
作者:
刘小雨 庞树朝 江杨杨 王丽欣
(天津中医药大学第一附属医院 国家中医针灸临床医学研究中心,天津 300193)
Author(s):
LIU XiaoyuPANG ShuchaoJIANG YangyangWANG Lixin
?First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion,Tianjin 300193,China)
关键词:
动脉粥样硬化线粒体动力相关蛋白1
Keywords:
AtherosclerosisMitochondrionDynamin-related protein 1
DOI:
10.16806/j.cnki.issn.1004-3934.2024.01.018
摘要:
线粒体动力学是指线粒体通过分裂和融合维持线粒体网络的动态平衡并为细胞提供能量,多种因素诱导下引发的线粒体动力学失衡,尤其是线粒体分裂异常与动脉粥样硬化(AS)进展密切相关。而动力相关蛋白1(Drp1)是介导线粒体分裂的最关键蛋白,Drp1在AS中表达增加与内皮细胞衰老、血管平滑肌细胞增殖和迁移及向成骨样细胞转化、巨噬细胞参与的胆固醇外流及炎症反应等AS相关病理因素相互影响,加速疾病进程。此外,Drp1的抑制剂及部分中药提取物被证明依赖于Drp1途径减缓AS进程。现就Drp1的结构与活性调控、其在AS进展中的关键作用及靶向Drp1治疗AS的研究现状加以阐述。
Abstract:
Mitochondrial dynamics refers to mitochondrial fission and fusion in order to maintain the dynamic balance of the mitochondrial network and provide energy to the cell. The advancement of atherosclerosis(AS) is directly linked to an imbalance in mitochondrial dynamics caused by a variety of causes,particularly abnormal mitochondrial fission. Dynamic related protein 1(Drp1) is the most critical protein that mediates mitochondrial division. The increased expression of Drp1 in AS interacts with pathological factors related to AS,such as endothelial cell senescence,proliferation and migration of vascular smooth muscle cells,and transformation to osteoblast-like cells,macrophage-involved cholesterol efflux and inflammation,thereby accelerating the disease progression. In addition,inhibitors of Drp1 and some herbal extracts have been shown to be dependent on the Drp1 pathway to decelerate AS progression. This article elaborates on the structure and activity regulation of Drp1,its key role in the progression of AS,and the current research status of targeted Drp1 therapy for AS

参考文献/References:

[1] 中国心血管健康与疾病报告编写组,胡盛寿. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志,2022,37(6):553-578.

[2] Liu S,Zhao Y,Yao H,et al. DRP1 knockdown and atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury:DRP1 is a potential target for preventing atherosclerosis[J]. Exp Cell Res,2023,429(2):113688.

[3] Adebayo M,Singh S,Singh AP,et al. Mitochondrial fusion and fission:the fine-tune balance for cellular homeostasis[J]. FASEB J,2021,35(6):e21620.

[4] Protasoni M,Zeviani M. Mitochondrial structure and bioenergetics in normal and disease conditions[J]. Int J Mol Sci,2021,22(2):586.

[5] Lin J,Duan J,Wang Q,et al. Mitochondrial dynamics and mitophagy in cardiometabolic disease[J]. Front Cardiovasc Med,2022,9:917135.

[6] Roca-Portoles A,Tait SWG. Mitochondrial quality control:from molecule to organelle[J]. Cell Mol Life Sci,2021,78(8):3853-3866.

[7] Ng MYW,Wai T,Simonsen A. Quality control of the mitochondrion[J]. Dev Cell,2021,56(7):881-905.

[8] Forte M,Schirone L,Ameri P,et al. The role of mitochondrial dynamics in cardiovascular diseases[J]. Br J Pharmacol,2021,178(10):2060-2076.

[9] Fang X,Gustafsson ?B. DRP1-mediated mitophagy:safeguarding obese hearts from cardiomyopathy[J]. Circ Res,2023,133(1):22-24.

[10] Banerjee R,Mukherjee A,Nagotu S. Mitochondrial dynamics and its impact on human health and diseases:inside the DRP1 blackbox[J]. J Mol Med (Berl),2022,100(1):1-21.

[11] Zerihun M,Sukumaran S,Qvit N. The Drp1-mediated mitochondrial fission protein interactome as an emerging core player in mitochondrial dynamics and cardiovascular disease therapy[J]. Int J Mol Sci,2023,24(6):5785.

[12] Quiles JM,Gustafsson ?B. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol,2022,19(11):723-736.

[13] Jin JY,Wei XX,Zhi XL,et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin,2021,42(5):655-664.

[14] Ma R,Ma L,Weng W,et al. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation[J]. Sci Adv,2020,6(13):eaaz0361.

[15] Xiao H,Zhou H,Zeng G,et al. SUMOylation targeting mitophagy in cardiovascular diseases[J]. J Mol Med(Berl),2022,100(11):1511-1538.

[16] Salnikova D,Orekhova V,Grechko A,et al. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis[J]. Int J Mol Sci,2021,22(16):8990.

[17] 王玲,蒲里津. 内皮细胞氧化应激对动脉粥样硬化发病过程的作用机制[J]. 微循环学杂志,2022,32(3):66-70,78.

[18] Li D,Yang S,Xing Y,et al. Novel insights and current evidence for mechanisms of atherosclerosis:mitochondrial dynamics as a potential therapeutic target[J]. Front Cell Dev Biol,2021,9:673839.

[19] Chen Y,Liu C,Zhou P,et al. Coronary endothelium no-reflow injury is associated with ROS -modified mitochondrial fission through the JNK-Drp1 signaling pathway[J]. Oxid Med Cell Longev,2021,2021:6699516.

[20] Forrester SJ,Preston KJ,Cooper HA,et al. Mitochondrial fission mediates endothelial inflammation[J]. Hypertension,2020,76(1):267-276.

[21] Li J,Li X,Song S,et al. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases[J]. Redox Biol,2023,64:102778.

[22] Wang PW,Pang Q,Zhou T,et al. Irisin alleviates vascular calcification by inhibiting VSMC osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling pathway in chronic kidney disease[J]. Atherosclerosis,2022,346:36-45.

[23] Xia Y,Zhang X,An P,et al. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling[J]. Int J Mol Sci,2023,24(4):3483.

[24] Zhang J,Ma CR,Hua YQ,et al. Contradictory regulation of macrophages on atherosclerosis based on polarization,death and autophagy[J]. Life Sci,2021,276:118957.

[25] Liu X,Zhang X,Niu X,et al. Mdivi-1 modulates macrophage/microglial polarization in mice with EAE via the inhibition of the TLR2/4-GSK3β-NF-κB inflammatory signaling axis[J]. Mol Neurobiol,2022,59(1) :1-16.

[26] Shang LC,Wang M,Liu Y,et al. MSCs ameliorate hepatic IR injury by modulating phenotypic transformation of kupffer cells through Drp-1 dependent mitochondrial dynamics[J]. Stem Cell Rev Rep,2023 ,19(6):1965-1980.

[27] Su ZD,Li CQ,Wang HW,et al. Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviates atherosclerosis through the modulation of M1 polarization[J]. J Transl Med,2023,21(1):427.

[28] Mushenkova NV,Bezsonov EE,Orekhova VA,et al. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development[J]. Biomedicines,2021,9(8):915.

[29] Xu Y,Zhang Y,Xu Y,et al. Activation of CD137 signaling promotes macrophage apoptosis dependent on p38 MAPK pathway-mediated mitochondrial fission[J]. Int J Biochem Cell Biol,2021,136:106003.

[30] Wang Y,Subramanian M,Yurdagul A,et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages[J]. Cell,2017,171(2):331-345.e22.

[31] Xu T,Dong Q,Luo Y,et al. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells[J]. Int J Oral Sci,2021,13(1):28.

[32] Rogers MA,Hutcheson JD,Okui T,et al. Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion[J]. Cardiovasc Res,2021,117(11):2340-2353.

[33] Fang Y,Zhu Y,Wu Y,et al. Protective effects of mitochondrial fission inhibition on ox-LDL induced VSMC foaming via metabolic reprogramming[J]. Front Pharmacol,2022,13:970151.

[34] Bordt EA,Clerc P,Roelofs BA,et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species[J]. Dev Cell,2017,40(6):583-594.e6.

[35] Aishwarya R,Alam S,Abdullah CS,et al. Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics,respiration,and autophagy in cardiomyocytes[J]. Redox Biol,2020,36:101660.

[36] Tong W,Leng L,Wang Y,et al. Buyang huanwu decoction inhibits diabetes-accelerated atherosclerosis via reduction of AMPK-Drp1-mitochondrial fission axis[J]. J Ethnopharmacol,2023,312:116432.

[37] Chen CC,Li HY,Leu YL,et al. Corylin inhibits vascular cell inflammation,proliferation and migration and reduces atherosclerosis in apoE-deficient mice[J]. Antioxidants(Basel),2020,9(4):275.

[38] Zhu Y,Li M,Lu Y,et al. Ilexgenin A inhibits mitochondrial fission and promote Drp1 degradation by Nrf2-induced PSMB5 in endothelial cells[J]. Drug Dev Res,2019,80(4):481-489.

[39] Chen WR,Zhou YJ,Sha Y,et al. Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway[J]. J Cell Mol Med,2020,24(11):6043-6054.

[40] Hua J,Gao Z,Zhong S,et al. CISD1 protects against atherosclerosis by suppressing lipid accumulation and inflammation via mediating Drp1[J]. Biochem Biophys Res Commun,2021,577:80-88.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(1):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
 CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(1):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[3]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[4]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[5]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(1):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[6]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[7]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(1):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[8]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[9]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(1):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[10]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]

更新日期/Last Update: 2024-03-06