参考文献/References:
[1].Iacobellis G. Epicardial adipose tissue in contemporary cardiology[J]. Nat Rev Cardiol,2022,19(9):593-606.
[2].Karampetsou N,Alexopoulos L,Minia A,et al. Epicardial adipose tissue as an independent cardiometabolic risk factor for coronary artery disease[J]. Cureus,2022,14(6):e25578.
[3].Huang X,Yan L,Meng J,et al. Genetic lineage tracing identifies cardiac mesenchymal-to-adipose transition in an arrhythmogenic cardiomyopathy model[J]. Sci China Life Sci,2023,66(1):51-66.
[4].Shan T,Shuwen Z,Hengbin W,et al. Can EAT be an INOCA goalkeeper[J]. Front Endocrinol(Lausanne),2023,13:1028429.
[5].Song S,Tien CL,Cui H,et al. Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox[J]. Circulation,2022,145(6):448-464.
[6].Chen Z,Jin ZX,Cai J,et al. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy[J]. J Mol Med(Berl),2022,100(12):1721-1739.
[7].Fillmore N,Hou V,Sun J,et al. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2[J]. PLoS One, 2022,17(3):e0265007.
[8].Kalliora C,Drosatos K. The glitazars paradox:cardiotoxicity of the metabolically beneficial dual PPARα and PPARγ activation[J]. J Cardiovasc Pharmacol,2020,76(5):514-526.
[9].Concei??o G,Martins D,M Miranda I,et al. Unraveling the role of epicardial adipose tissue in coronary artery disease:partners in crime?[J]. Int J Mol Sci,2020,21(22):8866.
[10].Malavazos AE,di Leo G,Secchi F,et al. Relation of echocardiographic epicardial fat thickness and myocardial fat[J]. Am J Cardiol,2010,105(12):1831-1835.
[11].[11] Konwerski M,G?secka A,Opolski G,et al. Role of epicardial adipose tissue in cardiovascular diseases:a review[J]. Biology(Basel),2022,11(3):355.
[12].[12] van Linthout S,Tsch?pe C. Inflammation—Cause or consequence of heart failure or both?[J]. Curr Heart Fail Rep,2017,14(4):251-265.
[13].[13] Mattesi G,Cipriani A,Bauce B,et al. Arrhythmogenic left ventricular cardiomyopathy:genotype-phenotype correlations and new diagnostic criteria[J]. J Clin Med,2021,10(10):2212.
[14].Zweyer M,Sabir H,Dowling P,et al. Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers[J]. Histol Histopathol,2022,37(2):101-116.
[15].Schneider SM,Sansom GT,Guo LJ,et al. Natural history of histopathologic changes in cardiomyopathy of golden retriever muscular dystrophy[J]. Front Vet Sci,2022,8:759585.
[16].[16] Ranjbarvaziri S,Kooiker KB,Ellenberger M,et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy[J]. Circulation,2021,144(21):1714-1731.
[17].[17] Sawa Y,Matsushita N,Sato S,et al. Chronic HDAC6 activation induces atrial fibrillation through atrial electrical and structural remodeling in transgenic mice[J]. Int Heart J,2021,62(3):616-626.
[18].[18] Wang Q,Xi W,Yin L,et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis[J]. Sci Rep,2018,8(1):3585.
[19].[19] Wang Q,Shen H,Min J,et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis[J]. J Transl Med,2018,16(1):229.
[20].[20] Kira S,Abe I,Ishii Y,et al. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue:analysis using an organo-culture system[J]. Heart Rhythm,2020,17(9):1591-1601.
[21].[21] Chumakova G,Gritsenko O,Gruzdeva O,et al. Analysis of probable lipotoxic damage and myocardial fibrosis in epicardial obesity[J]. Aging(Albany NY),2021,13(11):14806-14815.
[22].[22] Matos D,Ferreira AM,Freitas P,et al. The relationship between epicardial fat and atrial fibrillation cannot be fully explained by left atrial fibrosis[J]. Arq Bras Cardiol,2022,118(4):737-742.
[23].[23] Sato S,Suzuki J,Hirose M,et al. Cardiac overexpression of perilipin 2 induces atrial steatosis,connexin 43 remodeling,and atrial fibrillation in aged mice[J]. Am J Physiol Endocrinol Metab,2019,317(6):E1193-E1204.
[24].[24] Huo Y,Gaspar T,Pohl M,et al. Prevalence and predictors of low voltage zones in the left atrium in patients with atrial fibrillation[J]. Europace,2018,20(6):956-962.
[25].[25] Shao Y,Chen L,Chen W,et al. Left atrial epicardial adipose tissue is associated with low voltage zones in the left atrium in patients with non-valvular atrial fibrillation[J]. Front Cardiovasc Med,2022,9:924646.
[26].[26] Kenchaiah S,Ding J,Carr JJ,et al. Pericardial fat and the risk of heart?failure[J]. J Am Coll Cardiol,2021,77(21):2638-2652.
[27].[27] Myasoedova VA,Parisi V,Moschetta D,et al. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue:a systematic review and meta-analysis[J]. Cardiovasc Diabetol,2023,22(1):23.
[28].[28] Synetos A,Karanasos A,Spyropoulos S,et al. Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human epicardial and intramyocardial coronary arteries of male patients undergoing coronary artery bypass grafting[J]. Cardiology,2018,139(4):203-207.
[29].[29] El Shahawy M,Tucker S,Izadi L,et al. Excess epicardial fat volume in women is a novel risk marker for microvascular dysfunction,which may be a contributing factor in the atypical chest pain syndrome[J]. Egypt Heart J,2021,73(1):37.
[30].[30] Malhotra A,Redberg RF,Meier P. Saturated fat does not clog the arteries:coronary heart disease is a chronic inflammatory condition,the risk of which can be effectively reduced from healthy lifestyle interventions[J]. Br J Sports Med,2017,51(15):1111-1112.
[31].[31] Yuvaraj J,Cheng K,Lin A,et al. The emerging role of CT-based imaging in adipose tissue and coronary inflammation[J]. Cells,2021,10(5):1196.
[32].[32] Gaibazzi N,Martini C,Benatti G,et al. Atrial fibrillation and peri-atrial inflammation measured through adipose tissue attenuation on cardiac computed tomography[J]. Diagnostics(Basel),2021,11(11):2087.
[33].[33] Salari R,Ballard DH,Hoegger MJ,et al. Fat-only Dixon:how to use it in body MRI[J]. Abdom Radiol(NY), 2022,47(7):2527-2544.
[34].[34] Chun KH,Oh J,Hong YJ,et al. Prognostic cardiac magnetic resonance markers of left ventricular involvement in arrhythmogenic cardiomyopathy for predicting heart failure outcomes[J]. J Am Heart Assoc,2022,11(6):e023167.
[35].[35] Georgiopoulos G,Zampieri M,Molaro S,et al. Cardiac magnetic resonance in patients with ARVC and family members:the potential role of native T1 mapping[J]. Int J Cardiovasc Imaging,2021,37(6):2037-2047.
[36].[36] Maforo NG,Magrath P,Moulin K,et al. T1-mapping and extracellular volume estimates in pediatric subjects with Duchenne muscular dystrophy and healthy controls at 3T[J]. J Cardiovasc Magn Reson,2020,22(1):85.
[37].[37] Bakermans AJ,Boekholdt SM,de Vries DK,et al. Quantification of myocardial creatine and triglyceride content in the human heart:precision and accuracy of in vivo proton magnetic resonance spectroscopy[J]. J Magn Reson Imaging,2021,54(2):411-420.
[38].[38] de Wit-Verheggen VHW,van de Weijer T. Changes in cardiac metabolism in prediabetes[J]. Biomolecules,2021,11(11):1680.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(7):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(7):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(7):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]