[1]熊子衿 李晓欢 徐婷 颜梅 许华燕.心脏脂肪沉积机制及相关心血管疾病研究进展[J].心血管病学进展,2023,(7):607.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.008]
 XIONG Zijin,LI Xiaohuan,XU TingYAN Mei,et al.CTMRIMechanism of cardiac fat deposition and the research progression of related cardiovascular diseases[J].Advances in Cardiovascular Diseases,2023,(7):607.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.008]
点击复制

心脏脂肪沉积机制及相关心血管疾病研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
607
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
CTMRIMechanism of cardiac fat deposition and the research progression of related cardiovascular diseases
作者:
熊子衿12 李晓欢12 徐婷1 颜梅1 许华燕1
(1.四川大学华西第二医院放射科 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041;2.达州市中心医院影像中心,四川 达州 635000)
Author(s):
XIONG Zijin12LI Xiaohuan12XU Ting1YAN Mei1XU Huayan1
(1.Department of RadiologyWest China Second HospitalSichuan UniversityKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education,Chengdu 610041,Sichuan,China; 2.Department of Radiology,Dazhou Central Hospital,Dazhou 635000,Sichuan,China)
关键词:
心脏脂肪组织心血管疾病CT心脏磁共振超声心动图
Keywords:
Cardiac adipose tissueCardiovascular diseaseCTCardiac magnetic resonanceEchocardiography
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.008
摘要:
心肌细胞代谢特点及心外膜脂肪组织独特解剖及生理功能可能是相关心血管疾病的基础,多模态影像技术的快速发展在临床诊断心肌脂肪代谢异常所致相关疾病诊断中具有重要价值。现从心脏脂肪组织解剖、生理功能、相关疾病发生机制及其影像学研究进展进行综述。
Abstract:
Cardiomyocyte lipid metabolism characteristics and epicardial fat (Epicardial Fat, EAT) unique anatomical and physiological function laid the foundation of cardiovascular disease, imaging technology, rapid development in the clinical diagnosis of abnormal myocardial fat metabolism related disease diagnosis has important value, this paper from the heart fat anatomy, physiological function, related disease mechanism and imaging research progress

参考文献/References:

[1].Iacobellis G. Epicardial adipose tissue in contemporary cardiology[J]. Nat Rev Cardiol,2022,19(9):593-606.
[2].Karampetsou N,Alexopoulos L,Minia A,et al. Epicardial adipose tissue as an independent cardiometabolic risk factor for coronary artery disease[J]. Cureus,2022,14(6):e25578.
[3].Huang X,Yan L,Meng J,et al. Genetic lineage tracing identifies cardiac mesenchymal-to-adipose transition in an arrhythmogenic cardiomyopathy model[J]. Sci China Life Sci,2023,66(1):51-66.
[4].Shan T,Shuwen Z,Hengbin W,et al. Can EAT be an INOCA goalkeeper[J]. Front Endocrinol(Lausanne),2023,13:1028429.
[5].Song S,Tien CL,Cui H,et al. Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox[J]. Circulation,2022,145(6):448-464.
[6].Chen Z,Jin ZX,Cai J,et al. Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy[J]. J Mol Med(Berl),2022,100(12):1721-1739.
[7].Fillmore N,Hou V,Sun J,et al. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2[J]. PLoS One, 2022,17(3):e0265007.
[8].Kalliora C,Drosatos K. The glitazars paradox:cardiotoxicity of the metabolically beneficial dual PPARα and PPARγ activation[J]. J Cardiovasc Pharmacol,2020,76(5):514-526.
[9].Concei??o G,Martins D,M Miranda I,et al. Unraveling the role of epicardial adipose tissue in coronary artery disease:partners in crime?[J]. Int J Mol Sci,2020,21(22):8866.
[10].Malavazos AE,di Leo G,Secchi F,et al. Relation of echocardiographic epicardial fat thickness and myocardial fat[J]. Am J Cardiol,2010,105(12):1831-1835.
[11].[11] Konwerski M,G?secka A,Opolski G,et al. Role of epicardial adipose tissue in cardiovascular diseases:a review[J]. Biology(Basel),2022,11(3):355.
[12].[12] van Linthout S,Tsch?pe C. Inflammation—Cause or consequence of heart failure or both?[J]. Curr Heart Fail Rep,2017,14(4):251-265.
[13].[13] Mattesi G,Cipriani A,Bauce B,et al. Arrhythmogenic left ventricular cardiomyopathy:genotype-phenotype correlations and new diagnostic criteria[J]. J Clin Med,2021,10(10):2212.
[14].Zweyer M,Sabir H,Dowling P,et al. Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers[J]. Histol Histopathol,2022,37(2):101-116.
[15].Schneider SM,Sansom GT,Guo LJ,et al. Natural history of histopathologic changes in cardiomyopathy of golden retriever muscular dystrophy[J]. Front Vet Sci,2022,8:759585.
[16].[16] Ranjbarvaziri S,Kooiker KB,Ellenberger M,et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy[J]. Circulation,2021,144(21):1714-1731.
[17].[17] Sawa Y,Matsushita N,Sato S,et al. Chronic HDAC6 activation induces atrial fibrillation through atrial electrical and structural remodeling in transgenic mice[J]. Int Heart J,2021,62(3):616-626.
[18].[18] Wang Q,Xi W,Yin L,et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis[J]. Sci Rep,2018,8(1):3585.
[19].[19] Wang Q,Shen H,Min J,et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis[J]. J Transl Med,2018,16(1):229.
[20].[20] Kira S,Abe I,Ishii Y,et al. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue:analysis using an organo-culture system[J]. Heart Rhythm,2020,17(9):1591-1601.
[21].[21] Chumakova G,Gritsenko O,Gruzdeva O,et al. Analysis of probable lipotoxic damage and myocardial fibrosis in epicardial obesity[J]. Aging(Albany NY),2021,13(11):14806-14815.
[22].[22] Matos D,Ferreira AM,Freitas P,et al. The relationship between epicardial fat and atrial fibrillation cannot be fully explained by left atrial fibrosis[J]. Arq Bras Cardiol,2022,118(4):737-742.
[23].[23] Sato S,Suzuki J,Hirose M,et al. Cardiac overexpression of perilipin 2 induces atrial steatosis,connexin 43 remodeling,and atrial fibrillation in aged mice[J]. Am J Physiol Endocrinol Metab,2019,317(6):E1193-E1204.
[24].[24] Huo Y,Gaspar T,Pohl M,et al. Prevalence and predictors of low voltage zones in the left atrium in patients with atrial fibrillation[J]. Europace,2018,20(6):956-962.
[25].[25] Shao Y,Chen L,Chen W,et al. Left atrial epicardial adipose tissue is associated with low voltage zones in the left atrium in patients with non-valvular atrial fibrillation[J]. Front Cardiovasc Med,2022,9:924646.
[26].[26] Kenchaiah S,Ding J,Carr JJ,et al. Pericardial fat and the risk of heart?failure[J]. J Am Coll Cardiol,2021,77(21):2638-2652.
[27].[27] Myasoedova VA,Parisi V,Moschetta D,et al. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue:a systematic review and meta-analysis[J]. Cardiovasc Diabetol,2023,22(1):23.
[28].[28] Synetos A,Karanasos A,Spyropoulos S,et al. Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human epicardial and intramyocardial coronary arteries of male patients undergoing coronary artery bypass grafting[J]. Cardiology,2018,139(4):203-207.
[29].[29] El Shahawy M,Tucker S,Izadi L,et al. Excess epicardial fat volume in women is a novel risk marker for microvascular dysfunction,which may be a contributing factor in the atypical chest pain syndrome[J]. Egypt Heart J,2021,73(1):37.
[30].[30] Malhotra A,Redberg RF,Meier P. Saturated fat does not clog the arteries:coronary heart disease is a chronic inflammatory condition,the risk of which can be effectively reduced from healthy lifestyle interventions[J]. Br J Sports Med,2017,51(15):1111-1112.
[31].[31] Yuvaraj J,Cheng K,Lin A,et al. The emerging role of CT-based imaging in adipose tissue and coronary inflammation[J]. Cells,2021,10(5):1196.
[32].[32] Gaibazzi N,Martini C,Benatti G,et al. Atrial fibrillation and peri-atrial inflammation measured through adipose tissue attenuation on cardiac computed tomography[J]. Diagnostics(Basel),2021,11(11):2087.
[33].[33] Salari R,Ballard DH,Hoegger MJ,et al. Fat-only Dixon:how to use it in body MRI[J]. Abdom Radiol(NY), 2022,47(7):2527-2544.
[34].[34] Chun KH,Oh J,Hong YJ,et al. Prognostic cardiac magnetic resonance markers of left ventricular involvement in arrhythmogenic cardiomyopathy for predicting heart failure outcomes[J]. J Am Heart Assoc,2022,11(6):e023167.
[35].[35] Georgiopoulos G,Zampieri M,Molaro S,et al. Cardiac magnetic resonance in patients with ARVC and family members:the potential role of native T1 mapping[J]. Int J Cardiovasc Imaging,2021,37(6):2037-2047.
[36].[36] Maforo NG,Magrath P,Moulin K,et al. T1-mapping and extracellular volume estimates in pediatric subjects with Duchenne muscular dystrophy and healthy controls at 3T[J]. J Cardiovasc Magn Reson,2020,22(1):85.
[37].[37] Bakermans AJ,Boekholdt SM,de Vries DK,et al. Quantification of myocardial creatine and triglyceride content in the human heart:precision and accuracy of in vivo proton magnetic resonance spectroscopy[J]. J Magn Reson Imaging,2021,54(2):411-420.
[38].[38] de Wit-Verheggen VHW,van de Weijer T. Changes in cardiac metabolism in prediabetes[J]. Biomolecules,2021,11(11):1680.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(7):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(7):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(7):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(7):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

备注/Memo

备注/Memo:
基金项目:四川省科技计划项目(重点研发项目)(2021YFS0175);国家自然科学基金面上项目(82271981)
更新日期/Last Update: 2023-08-18