[1]田振宇 刘燕娥 朱丹 曹宝山 崔鸣.肿瘤化疗心肌损伤机制及其与肠道菌群相关性的研究进展[J].心血管病学进展,2023,(6):496.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.004]
 TIAN Zhenyu,LIU Yane,ZHU Dan,et al.Progress of the Mechanism of Myocardial Injury and its Correlation between Tumor Chemotherapy and Intestinal Microbiota[J].Advances in Cardiovascular Diseases,2023,(6):496.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.004]
点击复制

肿瘤化疗心肌损伤机制及其与肠道菌群相关性的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年6期
页码:
496
栏目:
综述
出版日期:
2023-06-25

文章信息/Info

Title:
Progress of the Mechanism of Myocardial Injury and its Correlation between Tumor Chemotherapy and Intestinal Microbiota
作者:
田振宇 刘燕娥 朱丹 曹宝山 崔鸣
(北京大学第三医院心血管内科 肿瘤化疗与放射病科,北京 100191)
Author(s):
TIAN ZhenyuLIU Yan’eZHU DanCAO BaoshanCUI Ming
(Department of Cardiology,Tumor chemotherapy and Radiology,Peking University Third Hospital,Beijing 100191China)
关键词:
化疗心肌损伤肠道微生态
Keywords:
ChemotherapyMyocardial injuryIntestinal microecology
DOI:
10.16806/j.cnki.issn.1004-3934.2023.06.004
摘要:
近年来,新型抗肿瘤药不断涌现,但在恶性肿瘤得到有效控制的同时,随着抗肿瘤药的大量使用,越来越多的患者出现心血管系统并发症。关于肿瘤化疗相关心肌损伤机制尚未完全阐明,近期比较热门的肠道微生物也可能参与到化疗心肌损伤的发生和发展中来。现对不同化疗药物造成心肌损伤的机制及未来可能的发展方向进行综述。
Abstract:
In recent years,new anti-tumor drugs have been emerging continuously,but while the malignant tumors are being effectively controlled,with the extensive use of tumor drugs,more and more patients have developed cardiovascular system complications. The mechanism of myocardial injury related to tumor chemotherapy has not been fully elucidated,and the most popular intestinal microbes may also participate in the occurrence and development of myocardial injury associated with chemotherapy. This review will review the mechanisms of myocardial injury caused by different chemotherapeutic agents and possible future directions

参考文献/References:

[1]Ghatalia P,Je Y,Kaymakcalan MD,et al. QTc interval prolongation with vascular endothelial growth factor receptor tyrosine kinase inhibitors[J]. Br J Cancer,2015,112(2):296-305.

[2]Lipshultz SE,Cohen H,Colan SD,et al. The relevance of information generated by in vitro experimental models to clinical doxorubicin cardiotoxicity[J]. Leuk Lymphoma,2006,47(8):1454-1458.
[3]Babiker HM,McBride A,Newton M,et al. Cardiotoxic effects of chemotherapy:a review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system[J]. Crit Rev Oncol Hematol,2018,126:186-200.
[4]Thavendiranathan P,Abdel-Qadir H,Fischer HD,et al. Breast cancer therapy-related cardiac dysfunction in adult women treated in routine clinical practice:a population-based cohort study[J]. J Clin Oncol,2016,34(19):2239-2246.
[5]Hooning MJ,Botma A,Aleman BM,et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer[J]. J Natl Cancer Inst,2007,99(5):365-375.
[6]Bloom MW,Hamo CE,Cardinale D,et al. Cancer therapy-related cardiac dysfunction and heart failure:part 1:definitions,pathophysiology,risk factors,and imaging[J]. Circ Heart fail,2016,9(1):e002661.
[7]Tewey KM,Chen GL,Nelson EM,et al. Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase Ⅱ[J]. J Biol Chem,1984,259(14):9182-9187.
[8]Nicolazzi MA,Carnicelli A,Fuorlo M,et al. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer[J]. Eur Rev Med Pharmacol Sci,2018,22(7):2175-2185.
[9]Geisberg CA,Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage[J]. Curr Hypertens Rep,2010,12(6):404-410.
[10]Grenier MA,Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults[J]. Semin Oncol,1998,25(4 suppl 10):72-85.
[11]Abu-Khalaf MM,Juneja V,Chung GG,et al. Long-term assessment of cardiac function after dose-dense and -intense sequential doxorubicin (A),paclitaxel (T),and cyclophosphamide (C) as adjuvant therapy for high risk breast cancer[J]. Breast Cancer Res Treat,2007,104(3):341-349.
[12]Dolladille C,Akroun J,Morice PM,et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors:a safety meta-analysis[J]. Eur Heart J,2021,42(48):4964-4977.
[13]Ghidini M,Fusco N,Salati M,et al. The emergence of immune-checkpoint inhibitors in colorectal cancer therapy[J]. Curr Drug Targets,2021,22(9):1021-1033.
[14]Langford CA,Cuthbertson D,Ytterberg SR,et al. A randomized,double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis[J]. Arthritis Rheumatol,2017,69(4):837-845.
[15]Kamesh L,Heward JM,Williams JM,et al. CT60 and +49 polymorphisms of CTLA 4 are associated with ANCA-positive small vessel vasculitis[J]. Rheumatology (Oxford),2009,48(12):1502-1505.
[16]周扬,刘宁波,黄飞,等. 人类表皮生长因子受体-2单链抗体抑制高表达人类表皮生长因子受体-2肿瘤生长[J]. 中华实验外科杂志,2017,34(7):1111-1114.
[17]Pondé NF,Lambertini M,de Azambuja E. Twenty years of anti-HER2 therapy-associated cardiotoxicity[J]. ESMO Open,2016,1(4):e000073.
[18]Hu Y,Sun B,Zhao B,et al. Cisplatin-induced cardiotoxicity with midrange ejection fraction:a case report and review of the literature[J]. Medicine (Baltimore),2018,97(52):e13807.
[19]Haugnes HS,Wethal T,Aass N,et al. Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer:a 20-year follow-up study[J]. J Clin Oncol,2010,28(30):4649-4657.
[20]Latifi Y,Moccetti F,Wu M,et al. Thrombotic microangiopathy as a cause of cardiovascular toxicity from the BCR-ABL1 tyrosine kinase inhibitor ponatinib[J]. Blood,2019,133(14):1597-1606.
[21]Thursby E,Juge N. Introduction to the human gut microbiota[J]. Biochem J,2017,474(11):1823-1836.
[22]Zhou X,Li J,Guo J,et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction[J]. Microbiome,2018,6(1):66.
[23]Lam V,Su J,Koprowski S,et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J,2012,26(4):1727-1735.
[24]Fan Y,Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol,2021,19(1):55-71.
[25]Zabell A,Tang WH. Targeting the Microbiome in Heart Failure[J]. Curr Treat Options Cardiovasc Med,2017,19(4):27.
[26]Mamic P,Chaikijurajai T,Tang WHW. Gut microbiome—A potential mediator of pathogenesis in heart failure and its comorbidities:State-of-the-art review[J]. J Mol Cell Cardiol,2021,152:105-117.
[27]Lam V,Su J,Hsu A,et al. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats[J]. PLoS One,2016,11(8):e0160840.
[28]Montassier E,Gastinne T,Vangay P,et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharmacol Ther,2015,42(5):515-528.
[29]Touchefeu Y,Montassier E,Nieman K,et al. Systematic review:the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—Current evidence and potential clinical applications[J]. Aliment Pharmacol Ther,2014,40(5):409-421.
[30]Shen S,Lim G,You Z,et al. Gut microbiota is critical for the induction of chemotherapy-induced pain[J]. Nat Neurosci,2017,20(9):1213-1216.
[31]Deleemans JM,Chleilat F,Reimer RA,et al. The chemo-gut study:investigating the long-term effects of chemotherapy on gut microbiota,metabolic,immune,psychological and cognitive parameters in young adult Cancer survivors;study protocol[J]. BMC Cancer,2019,19(1):1243.
[32]Huang K,Liu Y,Tang H,et al. Glabridin prevents doxorubicin-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization in mice[J]. Front Pharmacol,2019,10:107.
[33]An L,Wuri J,Zheng Z,et al. Microbiota modulate Doxorubicin induced cardiotoxicity[J]. Eur J Pharm Sci,2021,166:105977.
[34]Meng C,Bai C,Brown TD,et al. Human gut microbiota and gastrointestinal cancer[J]. Genomics Proteomics Bioinformatics,2018,16(1):33-49.
[35]Sinha R,Ahn J,Sampson JN,et al. Fecal microbiota,fecal metabolome,and colorectal cancer interrelations[J]. PLoS One,2016,11(3):e152126.
[36]Tourelle KM,Boutin S,Weigand MA,et al. The association of gut microbiota and complications in gastrointestinal-cancer therapies[J]. Biomedicines,2021,9(10):1305.

相似文献/References:

[1]冯泽豪 姜萌 卜军.心脏磁共振评价化疗所致心肌损伤的研究进展[J].心血管病学进展,2019,(5):667.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.003]
 FENG Zehao,JIANG Meng,PU Jun.Cardiovascular Magnetic Resonance for Detection of Myocardial Impairments Caused by Chemotherapy[J].Advances in Cardiovascular Diseases,2019,(6):667.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.003]
[2]李凤鹏 张军.2型心肌梗死和心肌损伤的研究进展[J].心血管病学进展,2019,(9):1275.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.023]
 LI Fengpeng,ZHANG Jun.Type 2 Myocardial Infarction and Myocardial Injury[J].Advances in Cardiovascular Diseases,2019,(6):1275.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.023]
[3]布热比古力·阿布力米提 付真彦.乳腺癌药物治疗与心肌损伤[J].心血管病学进展,2020,(8):802.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.005]
 Burebiguli·abulimitiFU Zhenyan.Drug Therapy of Breast Cancer and Assosiated Myocardial Damage[J].Advances in Cardiovascular Diseases,2020,(6):802.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.005]
[4]陈涛 张大勇 袁明 魏天龙.急性ST段抬高型心肌梗死患者血miRNA-499a与心肌损伤标志物的相关性分析[J].心血管病学进展,2020,(9):994.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.025]
 CHEN Tao,ZHANG Dayong,YUAN Ming,et al.Correlation Between Serum miRNA-499a and Myocardial Injury Markers in Patients with Acute ST-Segment Elevation Myocardial Infarction[J].Advances in Cardiovascular Diseases,2020,(6):994.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.025]
[5]汪汉,刘汉雄,蔡琳.2019冠状病毒病的心血管表现[J].心血管病学进展,2020,(11):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 WANG Han,LIU Hanxiong,CAI Lin.Cardiovascular Profiles in Corona V irus Disease 2019[J].Advances in Cardiovascular Diseases,2020,(6):1152.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[6]庞泽堃 李剑明.放射性核素分子显像在心肌损伤中的研究进展[J].心血管病学进展,2023,(1):25.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.007]
 PANG Zekun,LI Jianming.Radionuclide Molecular Imaging in Myocardial Injury[J].Advances in Cardiovascular Diseases,2023,(6):25.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.007]
[7]袁敏?韩轩茂?蔺雪峰.纳米氧化铈抗氧化保护心肌细胞的研究进展[J].心血管病学进展,2023,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
 YUAN Min,HAN Xuanmao,LIN Xuefeng.Cerium Oxide Nanoparticles in Antioxidant Protection of M yocardial?ells?/html>[J].Advances in Cardiovascular Diseases,2023,(6):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
[8]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(6):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[9]富悦 任家孚 阿荣.白细胞介素-13与免疫细胞相互作用在心血管疾病中的研究进展[J].心血管病学进展,2024,(4):345.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.013]
 FU Yue,REN Jiafu,A Rong.Interaction of Interleukin-13 and Immunocyte in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2024,(6):345.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.013]

更新日期/Last Update: 2023-07-20