[1]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
点击复制

长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年3期
页码:
238
栏目:
综述
出版日期:
2024-03-25

文章信息/Info

Title:
Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury
作者:
冉黔松1 周厚荣2
(1.贵州医科大学,贵州 贵阳 550001;2.贵州医科大学附属人民医院全科医学科,贵州 贵阳 550002)
Author(s):
RAN Qiansong1 ZHOU Hourong2
(1.Guizhou Medical University,Guiyang 550001 ,Guizhou,China;2.Department of General Medicine,People’s Hospital Affiliated to Guizhou Medical University,Guiyang 550001,Guizhou,China)
关键词:
长链非编码RNA自噬心肌缺血再灌注损伤心肌损伤
Keywords:
Long non-coding RNAAutophagyMyocardial ischemia-reperfusion injuryMyocardial injury
DOI:
10.16806/j.cnki.issn.1004-3934.2024.03.011
摘要:
缺血性心脏病严重危害人类身体健康,心肌缺血再灌注损伤(myocardial ischemia-reperfusion injury,MIRI)是其最常见的一种病理生理损害,如何预防或减轻其损害已成为关键问题。以往的研究结果表明,细胞氧化诱导、炎症反应、细胞凋亡和自噬对MIRI的发病和病理生理过程有重要影响。自噬在其中起关键作用,适度的自噬有助于维持心脏的正常功能。长链非编码RNA能够通过调控自噬参与MIRI进程,其异常表达及功能受到更多关注,但目前具体作用机制仍不明确,临床应用局限。因此通过综述长链非编码RNA调节自噬在MIRI中的研究进展,对改善MIRI治疗策略、发现新的治疗靶点来保护心肌提供一定的理论基础。
Abstract:
Ischemic heart disease seriously endangers human health. Myocardial ischemia-reperfusion injury(MIRI) is the most common pathophysiological damage. How to prevent or reduce its damage has become a key issue. Previous research results have shown that cellular oxidative induction,inflammation,apoptosis and autophagy have an important impact on the pathogene sis and pathophysiological process of MIRI. Autophagy plays a key role,and moderate autophagy helps maintain the normal function of the heart. Long non-coding RNA can participate in the MIRI by regulating autophagy,and its abnormal expression and function have attracted more attention. However,the specific mechanism of action is still unclear and its clinical application is limited. Therefore,by reviewing the research progress of long non-coding RNA regulating autophagy in MIRI,it provides a certain theoretical basis for improving MIRI treatment strategies and discovering new therapeutic targets to protect myocardium

参考文献/References:

[1] Ferraro R,Latina JM,Alfaddagh A,et al. Evaluation and management of patients?with stable angina:beyond the ischemia paradigm:JACC state-of-the-art review[J]. J Am Coll Cardiol,2020,76(19):2252-2266.

[2] Severino P,D’Amato A,Pucci M,et al. Ischemic heart disease pathophysiology paradigms overview:from plaque activation to microvascular dysfunction[J]. Int J Mol Sci,2020,21(21):8118.

[3] Mehta SR,Wood DA,Storey RF,et al. Complete revascularization with multivessel PCI for myocardial infarction[J]. N Engl J Med,2019,381(15):1411-1421.

[4] Lv XW,Wang MJ,Qin QY,et al. 6-Gingerol relieves myocardial ischaemia/reperfusion injury by regulating lncRNA H19/miR-143/ATG7 signaling axis-mediated autophagy[J]. Lab Invest,2021,101(7):865-877.

[5] Gatica D,Chiong M,Lavandero S,et al. The role of autophagy in cardiovascular pathology[J]. Cardiovasc Res,2022,118(4):934-950.

[6] Helgason GV,Holyoake TL,Ryan KM. Role of autophagy in cancer prevention,development and therapy[J]. Essays Biochem,2013,55:133-151.

[7] Tsukada M,Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett,1993,333(1-2):169-174.

[8] Wang K,Li Y,Qiang T,et al. Role of epigenetic regulation in myocardial ischemia/reperfusion injury[J]. Pharmacol Res,2021,170:105743.

[9] Mizushima N,Levine B. Autophagy in human diseases[J]. N Engl J Med,2020,383(16):1564-1576.

[10] Ichimiya T,Yamakawa T,Hirano T,et al. Autophagy and autophagy-related diseases:a review[J]. Int J Mol Sci,2020,21(23):8974.

[11] Tran S,Fairlie WD,Lee EF. BECLIN1:protein structure,function and regulation[J]. Cells,2021,10(6):1522.

[12] Vargas JNS,Hamasaki M,Kawabata T,et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol,2023,24(3):167-185.

[13] Ballesteros-?lvarez J,Andersen JK. mTORC2:the other mTOR in autophagy regulation[J]. Aging Cell,2021,20(8):e13431.

[14] Popov SV,Mukhomedzyanov AV,Voronkov NS,et al. Regulation of autophagy of the heart in ischemia and reperfusion[J]. Apoptosis,2023,28(1-2):55-80.

[15] Ma X,Liu H,Foyil SR,et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury[J]. Circulation,2012,125(25):3170-3181.

[16] Qin GW,Lu P,Peng L,et al. Ginsenoside Rb1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury[J]. Am J Chin Med,2021,49(8):1913-1927.

[17] Liu C,Zhang M,Ye S,et al. Acacetin protects myocardial cells against hypoxia-reoxygenation injury through activation of autophagy[J]. J Immunol Res,2021,2021:9979843.

[18] Xu H,Cheng J,He F. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway[J]. J Physiol Biochem,2022,78(2):401-413.

[19] Luo X,Wu S,Jiang Y,et al. Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury[J]. Int Immunopharmacol,2020,85:106609.

[20] Yang M,Xi N,Gao M,et al. Sitagliptin mitigates hypoxia/reoxygenation(H/R)-induced injury in cardiomyocytes by mediating sirtuin 3(SIRT3) and autophagy[J]. Bioengineered,2022,13(5):13162-13173.

[21] Huang KY,Liu S,Yu YW,et al. 3,4-benzopyrene aggravates myocardial ischemia-reperfusion injury-induced pyroptosis through inhibition of autophagy-dependent NLRP3 degradation[J]. Ecotoxicol Environ Saf,2023,254:114701.

[22] Zhang Y,Liu D,Hu H,et al. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury[J]. Biomed Pharmacother,2019,120:109464.

[23] Li M,Duan L,Li Y,et al. Long noncoding RNA/circular noncoding RNA–miRNA–mRNA axes in cardiovascular diseases[J]. 2019,233:116440.

[24] Nojima T,Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics[J]. Nat Rev Mol Cell Biol,2022,23(6):389-406.

[25] Bridges MC,Daulagala AC,Kourtidis A. LNCcation:lncRNA localization and function[J]. J Cell Biol,2021,220(2):e202009045.

[26] Barangi S,Hayes AW,Reiter R,et al. The therapeutic role of long non-coding RNAs in human diseases:a focus on the recent insights into autophagy[J]. Pharmacol Res,2019,142:22-29.

[27] Li J,Xie J,Wang YZ,et al. Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324[J]. Mol Med Rep ,2021,23(2):116.

[28] Mo Y,Wu H,Zheng X,et al. LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway[J]. J Biochem Mol Toxicol,2021,35(4):e22709.

[29] Wang S,Yao T,Deng F,et al. LncRNA MALAT1 promotes oxygen-glucose deprivation and reoxygenation induced cardiomyocytes injury through sponging miR-20b to enhance beclin1-mediated autophagy[J]. Cardiovasc Drugs Ther,2019,33(6):675-686.

[30] Liu CY,Zhang YH,Li RB,et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription [J]. Nat Commun,2018,9(1):29.

[31] Chen Z,Liu R,Niu Q,et al. Morphine Postconditioning alleviates autophage in ischemia-reperfusion induced cardiac injury through up-regulating lncRNA UCA1[J]. Biomed Pharmacother,2018,108:1357-1364.

[32] Liu X,Zhang C,Zhang C,et al. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury[J]. 2016,52(6):690-698.

[33] Li X,Chen R,Wang L,et al. Molecular mechanism of CAIF inhibiting myocardial infarction by sponging miR-488 and regulating AVEN expression[J]. Mol Med Rep,2022,26(2):270.

[34] Wang K,Liu CY,Zhou LY,et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p[J]. Nat Commun,2015,6:6779.

[35] Yu SY,Dong B,Fang ZF,et al. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy[J]. J Cell Mol Med,2018,22(10):4886-4898.

[36] Xu X,Huang CY,Oka SI. LncRNA KCNQ1OT1 promotes Atg12-mediated autophagy via inhibiting miR-26a-5p in ischemia reperfusion[J]. Int J Cardiol,2021,339:132-133.

[37] Li Z,Zhang Y,Ding N,et al. Inhibition of lncRNA XIST improves myocardial I/R injury by targeting miR-133a through inhibition of autophagy and regulation of SOCS2 [J]. Mol Ther Nucleic Acids,2019,18:764-773.

[38] Chen YQ,Yang X,Xu W,et al. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis[J]. IUBMB Life,2021,73(1):273-285.

[39] 张冠鑫,丛滨海,张加俊,等. 长链非编码RNA HIF1A-AS1对大鼠心肌缺血再灌注损伤的调控作用[J]. 第二军医大学学报,2015,36(2):131-135.

[40] Wang JJ,Bie ZD,Sun CF. Long noncoding RNA AK088388 regulates autophagy through miR-30a to affect cardiomyocyte injury[J]. J Cell Biochem,2019,120(6):10155-10163.

[41] Tong G,Wang Y,Xu C,et al. Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy[J]. Am J Transl Res,2019,11(9):5634-5644.

[42] Ouyang M,Lu J,Ding Q,et al. Knockdown of long non-coding RNA PVT1 protects human AC16 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis and autophagy by regulating miR-186/Beclin-1 axis[J]. Gene,2020,754:144775.

[43] Su Q,Liu Y,Lv XW,et al. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy[J]. J Mol Cell Cardiol,2019,133:12-25.

[44] Zeng M,Wei X,He YL,et al. EGCG protects against myocardial I/RI by regulating lncRNA Gm4419-mediated epigenetic silencing of the DUSP5/ERK1/2 axis[J]. Toxicol Appl Pharmacol,2021,433:115782.

[45] Han Y,Wang H,Wang Y,et al. Puerarin protects cardiomyocytes from ischemia-reperfusion injury by upregulating LncRNA ANRIL and inhibiting autophagy[J]. Cell Tissue Res,2021,385(3):739-751.

[46] Diao L,Zhang Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2[J]. Aging (Albany NY),2021,13(4):5967-5985.

[47] Liang H,Su X,Wu Q,et al. LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a[J]. Autophagy,2020,16(6):1077-1091.

[48] Wang W,Hu M,Liu H,et al. Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease[J]. Cell Metab,2021,33(10):1943-1956.e2.

相似文献/References:

[1]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
 JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(3):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
[2]马天雪 赵玉娟.长链非编码RNA及相关调控通路与急性心肌梗死的研究进展[J].心血管病学进展,2019,(8):1099.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.007]
 MA Tianxue,ZHAO Yujuan.Long Non-coding RNA and Its Related Regulatory Pathways and Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(3):1099.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.007]
[3]孙敬辉 于永慧 王承龙.心肌纤维化研究的新领域——长链非编码RNA[J].心血管病学进展,2019,(9):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
 SUN JinghuiYU YonghuiWANG Chenglong.Long No-Coding RNAA New Field of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(3):1233.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.012]
[4]张雪鹤 李晓梅.长链非编码RNA在急性心肌梗死发病中的研究进展[J].心血管病学进展,2019,(9):1271.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.022]
 ZHANG XueheLI Xiaomei.Long Noncoding RNA and Acute Myocardial Infarction[J].Advances in Cardiovascular Diseases,2019,(3):1271.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.022]
[5]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(3):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[6]邹先明 赵然尊.长链非编码RNA ANRIL与心血管疾病的研究进展[J].心血管病学进展,2020,(2):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 ZOU Xianming,ZHAO Ranzun.Long Non-Coding RNA ANRIL and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2020,(3):167.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
 Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(3):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
[8]靳天慧 陈亮 宗刚军.非编码RNA在血管钙化中的调控作用[J].心血管病学进展,2020,(9):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
 JIN Tianhui,CHEN Liang,ZONG Gangjun.Regulatory Role of Non-coding RNA in Vascular Calcification[J].Advances in Cardiovascular Diseases,2020,(3):938.[doi:10.16806/j.cnki.issn.1004-3934.2020.09.013]
[9]陈稳 叶强.自噬与心房颤动关系的研究进展[J].心血管病学进展,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 CHEN Wen,YE Qiang.The Relationship Between Autophagy and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[10]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]

更新日期/Last Update: 2024-04-26