[1]凯赛尔江·卡地尔 艾克力亚尔·艾尼瓦尔 秦练 热娜·热合木丁 马翔.深度学习在冠心病影像学诊断的研究进展[J].心血管病学进展,2022,(4):335-340.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
 Kaisaierjiang Kadier,Aikeliyaer Ainiwae,rQIN Lian,et al.Deep Learning in Imaging Diagnosis of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2022,(4):335-340.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.012]
点击复制

深度学习在冠心病影像学诊断的研究进展(/HTML)
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年4期
页码:
335-340
栏目:
综述
出版日期:
2022-04-25

文章信息/Info

Title:
Deep Learning in Imaging Diagnosis of Coronary Heart Disease
作者:
凯赛尔江·卡地尔 艾克力亚尔·艾尼瓦尔 秦练 热娜·热合木丁 马翔
(新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐 830054)
Author(s):
Kaisaierjiang KadierAikeliyaer AiniwaerQIN LianRena RehemudingMA Xiang
(Heart CenterThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054XinjiangChina)
关键词:
深度学习冠心病医学影像辅助诊断
Keywords:
Deep learningCoronary heart diseaseMedical imagingAuxiliary diagnosis
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.012
摘要:
在心血管领域,医学影像与人工智能融合能深入挖掘影像数据特征,并且辅助疾病的诊断。冠心病的诊断主要依靠影像学检查,由于医生之间资历、水平的不同,个体主观原因产生的误差让诊断结果的准确性有所降低,处理数量庞大的影像数据也耗费着医生大量的时间和精力。目前,深度学习作为人工智能的重要分支,在图像数据的处理上发挥着独特的优势,应用于冠心病影像诊断可提高诊断效率和准确性。现就深度学习技术在冠心病影像学诊断中的应用进行综述。
Abstract:
In the cardiovascular field,the fusion of medical imaging and artificial intelligence can deeply explore the features of imaging data and assist in the diagnosis of diseases. The diagnosis of coronary heart disease mainly relies on imaging examinations,and the accuracy of diagnostic results is reduced due to the differences in qualifications and levels among doctors and errors arising from individual subjective reasons. Processing the huge amount of image data consumes a lot of time and energy of doctors. At present,as an important branch of artificial intelligence,deep learning plays a unique advantage in image data processing which can be applied to coronary heart disease image diagnosis to improve diagnostic efficiency and accuracy. In this paper ,we review the application of deep learning technology in the diagnosis of coronary artery disease imaging.

参考文献/References:

[1 ] 胡盛寿 , 润霖 , 刘力生 , .?span style="font-family: 宋体;">《中国心血管病报告2018》概要[J].?span style="font-family: 宋体;">中国循环杂志,2019,34(3):209-220.

[2 ] 凯赛尔江 ·卡地尔 , 艾克力亚尔·艾尼瓦尔 , 马翔 .?span style="font-family: 宋体;">人工智能在主动脉夹层影像学诊断风险预测中的应用[J].?span style="font-family: 宋体;">中华心血管病杂志,2021,49(11):1152-1156.

[3 ]Premaladha J , Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms[J].?span style="font-family: "Times New Roman";">J Med Syst,2016,40(4):96.

[4]Botvinick M,Wang JX,Dabney W,et al. Deep reinforcement learning and its neuroscientific implications[J]. Neuron,2020,107(4):603-616.

[5 ]Wen B , Zeng WF , Liao Y , et al. Deep learning in proteomics[J]. Proteomics , 2020 , 20(21-22) : e 1900335.

[6 ]Sodickson A , Baeyens PF , Andriole KP , et al. Recurrent CT , cumulative radiation exposure , and associated radiation-induced cancer risks from CT of adults[J]. Radiology , 2009 , 251(1) : 175-184.

[7 ]Benz DC , Fuchs TA , Gr?i C , et al. Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography[J].?/span>Eur Heart J Cardiovasc Imaging,2018,19(2):193-198.

[8 ]Liu P , Wang M , Wang Y , et al. Impact of deep learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction : a prospective study[J].?/span>Acad Radiol,2020,27(9):1241-1248.

[9 ]Benz DC , Benetos G , Rampidis G , et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography : impact on noise , image quality and diagnostic accuracy[J].?/span>J Cardiovasc Comput Tomogr,2020,14(5):444-451.

[10 ]Hong JH , Park EA , Lee W , et al. Incremental image noise reduction in coronary CT angiography using a deep learning-based technique with iterative reconstruction[J].?span style="font-family: "Times New Roman";">Korean J Radiol,2020,21(10):1165-1177.

[11 ]Lossau T , Nickisch H , Wissel T , et al. Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks[J].?/span>Med Image Anal,2019,52:68-79.

[12 ]Jung S , Lee S , Jeon B , et al. Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography[J]. IEEE Access , 2020 , 8 : 81849-81863.

[13 ]Xiao C , Li Y , Jiang Y. Heart coronary artery segmentation and disease risk warning based on a deep learning algorithm[J]. IEEE Access , 2020 , 8 : 140108-140121.

[14 ]Jun Guo B , He X , Lei Y , et al. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation[J].?/span>Med Phys,2020,47(4):1775-1785.

[15 ]?span style="font-family: "Times New Roman";">He X,Guo B J,Lei Y,et al. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography[J].?/span>Phys Med Biol,2020,65(9):095012.

[16 ]?span style="font-family: "Times New Roman";">Commandeur F,Goeller M,Betancur J,et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J].?/span>IEEE Trans Med Imaging,2018,37(8):1835-1846.

[17 ] 李宸 , 徐少华 , 陆丽洁 , .?span style="font-family: 宋体;">基于冠状动脉CT血管成像的无创血流储备分数的研究进展[J].?span style="font-family: 宋体;">心血管病学进展,2021,42(5):445-448.

[18 ]Wang ZQ , Zhou YJ , Zhao YX , et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J].?/span>J Geriatr Cardiol,2019,16(1):42-48.

[19 ]Kumamaru KK , Fujimoto S , Otsuka Y , et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography[J].?/span>Eur Heart J Cardiovasc Imaging,2020,21(4):437-445.

[20 ]Zreik M , van Hamersvelt RW , Khalili N , et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography[J].?span style="font-family: "Times New Roman";">IEEE Trans Med Imaging,2020,39(5):1545-1557.

[21 ]Hecht HS.?span style="font-family: "Times New Roman";">Coronary artery calcium scanning:past,present,and future[J].?/span>JACC Cardiovasc Imaging,2015,8(5):579-596.

[22 ]van den Oever LB , Cornelissen L , Vonder M , et al. Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium[J]. Eur J Radiol , 2020 , 129 : 109114.

[23 ]Lessmann N , van Ginneken B , Zreik M , et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions[J].?/span>IEEE Trans Med Imaging,2018,37(2):615-625.

[24 ]Zhang N , Yang G , Zhang W , et al. Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan : total and vessel-specific quantifications[J].?/span>Eur J Radiol,2021,134:109420.

[25 ]van Velzen SGM , Lessmann N , Velthuis BK , et al. Deep learning for automatic calcium scoring in CT : validation using multiple cardiac CT and chest CT protocols[J]. Radiology , 2020 , 295(1) : 66-79.

[26 ] Tan LK , McLaughlin RA , Lim E , et al. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression[J]. J Magn Reson Imaging , 2018 , 48(1) : 140-152.

[27 ] Hosseini Hosseini?span style="font-family: "Times New Roman";">SA,Moeller S,Weing?tner S,et al.?/span>Accelerated coronary MRI using 3D SPIRiT-RAKI with sparsity regularization[J].?span style="font-family: "Times New Roman";">Proc IEEE Int Symp Biomed Imaging,2019,2019:1692-1695.

[28 ]Scannell CM , Veta M , Villa ADM , et al.?span style="font-family: "Times New Roman";">Deep-learning-based preprocessing for quantitative myocardial perfusion MRI[J].?/span>J Magn Reson Imaging,2020,51(6):1689-1696.

[29 ]Zhang N , Yang G , Gao Z , et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI[J]. Radiology , 2019 , 291(3) : 606-617.

[30 ]Shibutani T , Nakajima K , Wakabayashi H , et al. Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT[J].?/span>Ann Nucl Med,2019,33(2):86-92.

[31 ] Kaplan Berkaya S , Ak Sivrikoz I , Gunal S . Classification models for SPECT myocardial perfusion imaging[J].?/span>Comput Biol Med,2020,123:103893.

[32 ]Betancur J , Commandeur F , Motlagh M , et al.?/span>Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J].?/span>JACC Cardiovasc Imaging,2018,11(11):1654-1663.

[33 ]Betancur J , Hu LH , Commandeur F , et al.?/span>Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study[J].?/span>J Nucl Med,2019,60(5):664-670.

[34 ] Otaki Y , Singh A , Kavanagh P , et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease[J].?span style="font-family: "Times New Roman";">JACC Cardiovasc Imaging,2021,S1936-878X(21)00438-1.

[35 ] Liu H , Wu J , Miller EJ , et al. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning[J]. Eur J Nucl Med Mol Imaging , 2021 , 48(9):2793-2800.

[36 ]Gessert N , Lutz M , Heyder M , et al.?/span>Automatic plaque detection in IVOCT pullbacks using convolutional neural networks[J].?/span>IEEE Trans Med Imaging,2019,38(2):426-434.

[37 ]Gharaibeh Y , Prabhu DS , Kolluru C , et al. Coronary calcification segmentation in intravascular OCT images using deep learning : application to calcification scoring[J].?/span>J Med Imaging (Bellingham),2019,6(4):045002.

[38]Liu X,Du J,Yang J,et al. Coronary?/span>artery?/span>fibrous?/span>plaque?/span>detection?/span>based on?/span>multi-scale?/span>convolutional?/span>neural?/span>networks[J].?/span>J Sign Process Syst,2020,92(3):325-333.

[39 ]Kusunose K , Abe T , Haga A , et al.?/span>A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images[J].?span style="font-family: "Times New Roman";">JACC Cardiovasc Imaging , 2020 , 13(2 Pt 1):374-381 .

[40 ]?span style="font-family: "Times New Roman";">Ouyang D,He B,Ghorbani A,et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature,2020,580(7802):252-256.

[41]Huang MS,Wang CS,Chiang JH,et al.?span style="font-family: "Times New Roman";">Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography[J].?span style="font-family: "Times New Roman";">Circulation,2020,142(16):1510-1520.


相似文献/References:

[1]杜钧,佘强.冠心病抗炎治疗的临床研究进展[J].心血管病学进展,2016,(1):32.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.009]
 DU Jun,SHE Qiang.Clinical Research Progress of Anti-inflammatory Therapy of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2016,(4):32.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.009]
[2]努热曼古丽·阿布都克热木,马依彤.重度左心室收缩功能不全的冠心病患者血运重建治疗疗效及预后的评价[J].心血管病学进展,2016,(1):46.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.012]
 NUREMANGULI·Abudukeremu,MA Yitong.Evaluation of Efficacy and Prognosis of Revascularization Therapy on Patients with Coronary Heart Disease and Severe Left Ventricular Systolic Dysfunction[J].Advances in Cardiovascular Diseases,2016,(4):46.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.012]
[3]刘洋,综述,伍贵富,等.增强型体外反搏治疗冠心病的新机制[J].心血管病学进展,2016,(2):185.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.023]
 LIU Yang,WU Guifu.New Mechanism of Enhanced External Counterpulsation for Treatment of Coronary Artery Disease[J].Advances in Cardiovascular Diseases,2016,(4):185.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.023]
[4]杨洋,综述,沈比先,等.心脏核磁共振评估缺血性心脏病的应用价值[J].心血管病学进展,2016,(2):204.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.028]
 YANG Yang,SHEN Bixian.Value of Cardiac Magnetic Resonance Assessment of Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2016,(4):204.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.028]
[5]史敬,综述,马依彤,等.n-3多不饱和脂肪酸对心血管疾病的临床应用[J].心血管病学进展,2016,(3):278.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.016]
 SHI Jing,MA Yitong.Effects of n-3 Polyunsaturated Fatty Acids on Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(4):278.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.016]
[6]高柳,袁晋青.重复支架置入术治疗药物洗脱支架再狭窄的研究进展[J].心血管病学进展,2015,(5):555.[doi:10.3969/j.issn.1004-3934.2015.05.008]
 GAO Liu,YUAN Jingqing.Progress in Treatment for Drug-eluting Stent Restenosis by Re-implementation of Stents[J].Advances in Cardiovascular Diseases,2015,(4):555.[doi:10.3969/j.issn.1004-3934.2015.05.008]
[7]邓文政,邓平.MG53蛋白的研究进展[J].心血管病学进展,2015,(5):626.[doi:10.3969/j.issn.1004-3934.2015.05.027]
 DENG Wenzheng,DENG Ping.Research Progress of MG53[J].Advances in Cardiovascular Diseases,2015,(4):626.[doi:10.3969/j.issn.1004-3934.2015.05.027]
[8]陈静,李兴德.冠心病患者服药依从性的研究进展[J].心血管病学进展,2015,(6):728.[doi:10.3969/j.issn.1004-3934.2015.06.018]
 CHEN Jing,LI Xingde.Advances in Medication Adherence of Patients with Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2015,(4):728.[doi:10.3969/j.issn.1004-3934.2015.06.018]
[9]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
 YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[10]郭彩艳 靳春荣.腺苷药物在心血管疾病诊治中的应用进展[J].心血管病学进展,2019,(7):1011.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.012]
 GUO CaiyanJIN Chunrong.Progress in the Application of Adenosine Drugs in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):1011.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.012]

更新日期/Last Update: 2022-05-13