参考文献/References:
[1] Daniels A,van Bilsen M,Goldschmeding R,et al. Connective tissue growth factor and cardiac fibrosis[J]. Acta Physiol (Oxf),2009,195(3):321-338.
[2] von Lueder TG,Wang BH,Kompa AR,et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy[J]. Circ Heart Fail,2015,8(1):71-78.
[3] Weber KT,Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system[J]. Circulation,1991,83(6):1849-1865.
[4] Ambale-Venkatesh B,Lima JA. Cardiac MRI:a central prognostic tool in myocardial fibrosis[J]. Nat Rev Cardiol,2015,12(1):18-29.
[5] Raina S,Lensing SY,Nairooz RS,et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis[J]. JACC Cardiovasc Imaging,2016,9(11):1267-1277.
[6] Becker MAJ,Cornel JH,van de Ven PM,et al. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy:a review and meta-analysis[J]. JACC Cardiovasc Imaging,2018,11(9):1274-1284.
[7] Podlesnikar T,Delgado V,Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease[J]. Int J Cardiovasc Imaging,2018,34(1):97-112.
[8] Mewton N,Liu CY,Croisille P,et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol,2011,57(8):891-903.
[9] Picano E,Pelosi G,Marzilli M,et al. In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans[J]. Circulation,1990,81(1):58-64.
[10] 刘海利,孙娟,钱汝平,等. 超声背向散射积分量化犬心肌缺血再灌注致心肌纤维化程度的研究[J]. 中国动脉硬化杂志,2015,23(3):243-248.
[11] Vejdani-Jahromi M,Freedman J,Kim YJ,et al. Assessment of diastolic function using ultrasound elastography[J]. Ultrasound Med Biol,2018,44(3):551-561.
[12] Prior DL,Somaratne JB,Jenkins AJ,et al. Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery[J]. Open Heart,2015,2(1):e000278.
[13] Dent CL,Scott MJ,Wickline SA,et al. High-frequency ultrasound for quantitative characterization of myocardial edema[J]. Ultrasound Med Biol,2000,26(3):375-384.
[14] Jellis C,Martin J,Narula J,et al. Assessment of nonischemic myocardial fibrosis[J]. J Am Coll Cardiol,2010,56(2):89-97.
[15] Slimani A,Melchior J,de Meester C,et al. Relative contribution of afterload and interstitial fibrosis to myocardial function in severe aortic stenosis[J]. JACC Cardiovasc Imaging,2020,13(2 Pt 2):589-600.
[16] Karamitsos TD,Arvanitaki A,Karvounis H,et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imaging,2020,13(5):1221-1234.
[17] Wu KC,Zerhouni EA,Judd RM,et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction[J]. Circulation,1998,97(8):765-772.
[18] Beller GA,Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability[J]. J Cardiovasc Transl Res,2011,4(4):416-424.
[19] van den Borne SW,Isobe S,Verjans JW,et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction[J]. J Am Coll Cardiol,2008,52(24):2017-2028.
[20] Verjans JW,Lovhaug D,Narula N,et al. Noninvasive imaging of angiotensin receptors after myocardial infarction[J]. JACC Cardiovasc Imaging,2008,1(3):354-362.
[21] Knaapen P,Bondarenko O,Beek AM,et al. Impact of scar on water-perfusable tissue index in chronic ischemic heart disease:evaluation with PET and contrast-enhanced MRI[J]. Mol Imaging Biol,2006,8(4):245-251.
[22] Knaapen P,G?tte MJ,Paulus WJ,et al. Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study[J]. Radiology,2006,240(2):380-388.
[23] Saraste A,Knuuti J. PET imaging in heart failure:the role of new tracers[J]. Heart Fail Rev,2017,22(4):501-511.
[24] Takaoka H,Funabashi N,Uehara M,et al. Diagnostic accuracy of CT for the detection of left ventricular myocardial fibrosis in various myocardial diseases[J]. Int J Cardiol,2017,228:375-379.
[25] Nacif MS,Kawel N,Lee JJ,et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT[J]. Radiology,2012,264(3):876-883.
[26] Bandula S,White SK,Flett AS,et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT:validation against histologic findings[J]. Radiology,2013,269(2):396-403.
[27] Langer C,Lutz M,Eden M,et al. Hypertrophic cardiomyopathy in cardiac CT:a validation study on the detection of intramyocardial fibrosis in consecutive patients[J]. Int J Cardiovasc Imaging,2014,30(3):659-667.
[28] Kim RJ,Albert TS,Wible JH,et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction:an international,multicenter,double-blinded,randomized trial[J]. Circulation,2008,117(5):629-637.
[29] Ibrahim T,Bülow HP,Hackl T,et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction[J]. J Am Coll Cardiol,2007,49(2):208-216.
[30] Everett RJ,Stirrat CG,Semple SI,et al. Assessment of myocardial fibrosis with T1 mapping MRI[J]. Clin Radiol,2016,71(8):768-778.
[31] Liu A,Wijesurendra RS,Francis JM,et al. Adenosine stress and rest T1 mapping can differentiate between ischemic,infarcted,remote,and normal myocardium without the need for gadolinium contrast agents[J]. JACC Cardiovasc Imaging,2016,9(1):27-36.
[32] Dall’armellina E,Ferreira VM,Kharbanda RK,et al. Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction[J]. JACC Cardiovasc Imaging,2013,6(6):739-742.
[33] Puntmann VO,D’cruz D,Smith Z,et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus[J]. Circ Cardiovasc Imaging,2013,6(2):295-301.
[34] Sado DM,White SK,Piechnik SK,et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping[J]. Circ Cardiovasc Imaging,2013,6(3):392-398.
[35] Sado DM,Flett AS,Banypersad SM,et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart,2012,98(19):1436-1441.
[36] Coelho-Filho OR,Shah RV,Mitchell R,et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance:implications for early cardiac remodeling[J]. Circulation,2013,128(11):1225-1233.
[37] Kammerlander AA,Marzluf BA,Zotter-Tufaro C,et al. T1 mapping by CMR imaging:from histological validation to clinical implication[J]. JACC Cardiovasc Imaging,2016,9(1):14-23.
[38] Ide S,Riesenkampff E,Chiasson DA,et al. Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients[J]. J Cardiovasc Magn Reson,2017,19(1):10.
[39] de Meester de Ravenstein C,Bouzin C,Lazam S,et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T[J]. J Cardiovasc Magn Reson,2015,17(1):48.
[40] Kidambi A,Motwani M,Uddin A,et al. Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI[J]. JACC Cardiovasc Imaging,2017,10(9):989-999.
[41] Liu CY,Liu YC,Wu C,et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping:MESA(Multi-Ethnic Study of Atherosclerosis)[J]. J Am Coll Cardiol,2013,62(14):1280-1287.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(11):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(11):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(11):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[9]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[10]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(11):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[11]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(11):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[12]黄佳宇 熊安琪 蒋弼瀛 陈文佳.液-液相分离在心血管疾病中的研究进展[J].心血管病学进展,2024,(7):603.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.007]
HUANG Jiayu,XIONG Anqi,JIANG Biying,et al.Liquid-Liquid Phase Separation in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2024,(11):603.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.007]