[1]倪金荣 雷军强.心肌纤维化的无创影像诊断进展[J].心血管病学进展,2021,(11):1016-1019.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
 NI Jinrong,LEI Junqiang.Noninvasive Imaging Diagnosis of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2021,(11):1016-1019.[doi:10.16806/j.cnki.issn.1004-3934.2021.11.000]
点击复制

心肌纤维化的无创影像诊断进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年11期
页码:
1016-1019
栏目:
综述
出版日期:
2021-11-25

文章信息/Info

Title:
Noninvasive Imaging Diagnosis of Myocardial Fibrosis
文章编号:
202103072
作者:
倪金荣12 雷军强 13
(1.兰州大学第一临床医学院,甘肃 兰州 730000;2.兰州大学第一医院心外科,甘肃 兰州 730000;3.兰州大学第一医院放射科,甘肃 兰州 730000)
Author(s):
NI Jinrong12 LEI Junqiang 13
The First Clinical Medical School of Lanzhou University,Lanzhou 730000,Gansu,China; 2. Department of Cardiovascular Surgery, The First Hospital of Lanzhou University,Lanzhou 730000,Gansu,China; 3. Department of Radiology,The First Hospital of Lanzhou University, Lanzhou 730000, Gansu,China)
关键词:
心血管疾病心肌纤维化超声心动图心脏磁共振诊断
Keywords:
Cardiovascular disease Myocardial fibrosis Echocardiography Cardiac magnetic resonance imaging Diagnosis
DOI:
10.16806/j.cnki.issn.1004-3934.2021.11.000
摘要:
心肌纤维化是多种心脏疾病的共同病理特征,与严重的心血管不良事件以及不良预后密切相关。虽然病理学是公认的诊断心肌纤维化的金标准,但心肌活检是有创检查,临床应用局限性很大。心脏影像学技术可为心肌纤维化提供无创的诊断信息,在心脏疾病的诊断和管理中具有重要的作用。现对临床中可用于无创诊断心肌纤维化的心脏影像技术的优缺点和研究及应用进展做一综述。
Abstract:
Myocardial fibrosis is a common pathological feature of many heart diseases,which is closely related to serious cardiovascular adverse events and poor prognosis. Although the pathology is considered the gold standard in the diagnosis of myocardial fibrosis,myocardial biopsy is an invasive examination,which has great limitations in clinical application. Cardiac imaging technology can provide noninvasive diagnostic information for myocardial fibrosis,which plays an important role in the diagnosis and management of heart diseases. This paper will review the advantages and disadvantages,research and application progress of cardiac imaging technology which can be used for noninvasive diagnosis of myocardial fibrosis

参考文献/References:

[1] Daniels A,van Bilsen M,Goldschmeding R,et al. Connective tissue growth factor and cardiac fibrosis[J]. Acta Physiol (Oxf),2009,195(3):321-338.

[2] von Lueder TG,Wang BH,Kompa AR,et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy[J]. Circ Heart Fail,2015,8(1):71-78.

[3] Weber KT,Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system[J]. Circulation,1991,83(6):1849-1865.

[4] Ambale-Venkatesh B,Lima JA. Cardiac MRI:a central prognostic tool in myocardial fibrosis[J]. Nat Rev Cardiol,2015,12(1):18-29.

[5] Raina S,Lensing SY,Nairooz RS,et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis[J]. JACC Cardiovasc Imaging,2016,9(11):1267-1277.

[6] Becker MAJ,Cornel JH,van de Ven PM,et al. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy:a review and meta-analysis[J]. JACC Cardiovasc Imaging,2018,11(9):1274-1284.

[7] Podlesnikar T,Delgado V,Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease[J]. Int J Cardiovasc Imaging,2018,34(1):97-112.

[8] Mewton N,Liu CY,Croisille P,et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol,2011,57(8):891-903.

[9] Picano E,Pelosi G,Marzilli M,et al. In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans[J]. Circulation,1990,81(1):58-64.

[10] 刘海利,孙娟,钱汝平,等. 超声背向散射积分量化犬心肌缺血再灌注致心肌纤维化程度的研究[J]. 中国动脉硬化杂志,2015,23(3):243-248.

[11] Vejdani-Jahromi M,Freedman J,Kim YJ,et al. Assessment of diastolic function using ultrasound elastography[J]. Ultrasound Med Biol,2018,44(3):551-561.

[12] Prior DL,Somaratne JB,Jenkins AJ,et al. Calibrated integrated backscatter and myocardial fibrosis in patients undergoing cardiac surgery[J]. Open Heart,2015,2(1):e000278.

[13] Dent CL,Scott MJ,Wickline SA,et al. High-frequency ultrasound for quantitative characterization of myocardial edema[J]. Ultrasound Med Biol,2000,26(3):375-384.

[14] Jellis C,Martin J,Narula J,et al. Assessment of nonischemic myocardial fibrosis[J]. J Am Coll Cardiol,2010,56(2):89-97.

[15] Slimani A,Melchior J,de Meester C,et al. Relative contribution of afterload and interstitial fibrosis to myocardial function in severe aortic stenosis[J]. JACC Cardiovasc Imaging,2020,13(2 Pt 2):589-600.

[16] Karamitsos TD,Arvanitaki A,Karvounis H,et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imaging,2020,13(5):1221-1234.

[17] Wu KC,Zerhouni EA,Judd RM,et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction[J]. Circulation,1998,97(8):765-772.

[18] Beller GA,Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability[J]. J Cardiovasc Transl Res,2011,4(4):416-424.

[19] van den Borne SW,Isobe S,Verjans JW,et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction[J]. J Am Coll Cardiol,2008,52(24):2017-2028.

[20] Verjans JW,Lovhaug D,Narula N,et al. Noninvasive imaging of angiotensin receptors after myocardial infarction[J]. JACC Cardiovasc Imaging,2008,1(3):354-362.

[21] Knaapen P,Bondarenko O,Beek AM,et al. Impact of scar on water-perfusable tissue index in chronic ischemic heart disease:evaluation with PET and contrast-enhanced MRI[J]. Mol Imaging Biol,2006,8(4):245-251.

[22] Knaapen P,G?tte MJ,Paulus WJ,et al. Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study[J]. Radiology,2006,240(2):380-388.

[23] Saraste A,Knuuti J. PET imaging in heart failure:the role of new tracers[J]. Heart Fail Rev,2017,22(4):501-511.

[24] Takaoka H,Funabashi N,Uehara M,et al. Diagnostic accuracy of CT for the detection of left ventricular myocardial fibrosis in various myocardial diseases[J]. Int J Cardiol,2017,228:375-379.

[25] Nacif MS,Kawel N,Lee JJ,et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT[J]. Radiology,2012,264(3):876-883.

[26] Bandula S,White SK,Flett AS,et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT:validation against histologic findings[J]. Radiology,2013,269(2):396-403.

[27] Langer C,Lutz M,Eden M,et al. Hypertrophic cardiomyopathy in cardiac CT:a validation study on the detection of intramyocardial fibrosis in consecutive patients[J]. Int J Cardiovasc Imaging,2014,30(3):659-667.

[28] Kim RJ,Albert TS,Wible JH,et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction:an international,multicenter,double-blinded,randomized trial[J]. Circulation,2008,117(5):629-637.

[29] Ibrahim T,Bülow HP,Hackl T,et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction[J]. J Am Coll Cardiol,2007,49(2):208-216.

[30] Everett RJ,Stirrat CG,Semple SI,et al. Assessment of myocardial fibrosis with T1 mapping MRI[J]. Clin Radiol,2016,71(8):768-778.

[31] Liu A,Wijesurendra RS,Francis JM,et al. Adenosine stress and rest T1 mapping can differentiate between ischemic,infarcted,remote,and normal myocardium without the need for gadolinium contrast agents[J]. JACC Cardiovasc Imaging,2016,9(1):27-36.

[32] Dall’armellina E,Ferreira VM,Kharbanda RK,et al. Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction[J]. JACC Cardiovasc Imaging,2013,6(6):739-742.

[33] Puntmann VO,D’cruz D,Smith Z,et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus[J]. Circ Cardiovasc Imaging,2013,6(2):295-301.

[34] Sado DM,White SK,Piechnik SK,et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping[J]. Circ Cardiovasc Imaging,2013,6(3):392-398.

[35] Sado DM,Flett AS,Banypersad SM,et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart,2012,98(19):1436-1441.

[36] Coelho-Filho OR,Shah RV,Mitchell R,et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance:implications for early cardiac remodeling[J]. Circulation,2013,128(11):1225-1233.

[37] Kammerlander AA,Marzluf BA,Zotter-Tufaro C,et al. T1 mapping by CMR imaging:from histological validation to clinical implication[J]. JACC Cardiovasc Imaging,2016,9(1):14-23.

[38] Ide S,Riesenkampff E,Chiasson DA,et al. Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients[J]. J Cardiovasc Magn Reson,2017,19(1):10.

[39] de Meester de Ravenstein C,Bouzin C,Lazam S,et al. Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T[J]. J Cardiovasc Magn Reson,2015,17(1):48.

[40] Kidambi A,Motwani M,Uddin A,et al. Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI[J]. JACC Cardiovasc Imaging,2017,10(9):989-999.

[41] Liu CY,Liu YC,Wu C,et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping:MESA(Multi-Ethnic Study of Atherosclerosis)[J]. J Am Coll Cardiol,2013,62(14):1280-1287.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(11):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(11):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]韦余 胡科 温钞麟 邓玮.骨髓间充质干细胞干预心肌纤维化的增效措施[J].心血管病学进展,2019,(5):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
 Wei YuHu KeWen Chao LinDeng Wei.Synergistic Measures of Bone Marrow Mesenchymal Stem Cells in Intervention of Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2019,(11):774.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.027]
[9]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[10]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(11):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[11]冯小梅 李彦红.Ⅰ型前胶原羧基端肽和Ⅲ型前胶原氨基端肽在心肌纤维化的研究进展[J].心血管病学进展,2020,(5):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
 FENG Xiaomei,LI Yanhong.PCP and PNP in Myocardial Fibrosis[J].Advances in Cardiovascular Diseases,2020,(11):517.[doi:10.16806/j.cnki.issn.1004-3934.2020.05.018]
[12]黄佳宇 熊安琪 蒋弼瀛 陈文佳.液-液相分离在心血管疾病中的研究进展[J].心血管病学进展,2024,(7):603.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.007]
 HUANG Jiayu,XIONG Anqi,JIANG Biying,et al.Liquid-Liquid Phase Separation in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2024,(11):603.[doi:10.16806/j.cnki.issn.1004-3934.2024.07.007]

更新日期/Last Update: 2021-12-06