参考文献/References:
[1]Costea PI,Hildebrand F,Manimozhiyan A,et al. Enterotypes in the landscape of gut microbial community composition[J]. Nat Microbiol,2017,3(1):8-16.
[2]Senthong V,Li XS,Hudec T,et al. Plasma trimethylamine N-oxide,a gut microbe-generated phosphatidylcholine metabolite,is associated with atherosclerotic burden[J]. J Am Coll Cardiol,2016,67(22):2620-2628.
[3]Meyer KA,Benton TZ,Bennett BJ,et al. Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the Coronary Artery Risk Development in Young Adults Study(CARDIA) [J]. J Am Heart Assoc,2016,5(10): e003970.
[4]Zeng ZL,Chen JJ,Wu P,et al. OxLDL induces vascular endothelial cell pyroptosis through miR‐125a‐5p/TET2 pathway[J]. J Cell Physiol,2019,234(5):7475-7491.
[5]Mills EL,Kelly B,Logan A,et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell, 2016,167(2):457-470.
[6]Wu P ,Chen JN,Chen JJ,et al. Trimethylamine N‐oxide promotes apoE?/? mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway[J]. J Cell Physi ol,2020,Feb 3.DOI:10.1002/jcp.29518.Online ahead of print.
[7]Ma G,Pan B,Chen Y,et al.Trimethylamine N-oxide in atherogenesis:impairing endothelial selfrepair capacity and enhancing monocyte adhesion[J]. Biosci Rep,2017,37(2):BSR20160244.
[8]Tang WH,Wang Z,Levison BS,et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med,2013,368(17):1575-1584.
[9]Schiattarella GG,Sannino A,Toscano E,et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker:a systematic review and doseresponse meta-analysis[J]. Eur Heart J,2017,38(39):2948-2956.
[10]Heianza Y,Ma W,Manson JE,et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death:a systematic review and meta-analysis of prospective studies[J]. J Am Heart Assoc,2017,6(7):e004947.
[11]Xu KY,Xia GH,Lu JQ,et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients[J]. Sci Rep,2017,7(1):1445.
[12]Zhu W,Wang Z,Tang WHW,et al. Gut microbe-generated trimethylamine-N-oxide from dietary choline is prothrombotic in subjects[J]. Circulation,2017,135(17):1671-1673.
[13]Li J,Zhao F,Wang Y,et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome,2017,5(1):14.
[14]Donato AJ,Morgan RG,Walker AE,et al. Cellular and molecular biology of aging endothelial cells[J]. J Mol Cell Cardiol,2015,89( Pt B):122-135.
[15]Gibson R,Lau CE,Loo RL,et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors:the International Study of Macro-/Micronutrients and Blood Pressure(INTERMAP)[J]. Am J Clin Nutr,2020,111(2):280-290.
[16]Ma G,Pan B,Chen Y,et al. Trimethylamine N-oxide in atherogenesis:impairing endothelial selfrepair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017,37(2):BSR20160244.
[17]Suzuki T,Heaney LM,Bhandari SS,et al. Trimethylamine N-oxide and prognosis in acute heart failure[J]. Heart,2016,102(11):841-848.
[18]Schuett K,Kleber ME,Scharnagl H,et al. Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction[J]. J Am Coll Cardiol,2017,70(25):3202-3204.
[19]Suzuki T,Yazaki Y,Voors AA,et al. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure(from BIOSTAT-CHF)[J]. Eur J Heart Fail,2018,21(7):877-886.
[20]Organ CL,Otsuka H,Bhushan S,et al. Choline diet and its gut microbe -derived metabolite,trimethylamine N-Oxide,exacerbate pressure overload-induced heart failure[J]. Circ Heart Fail,2016,9(1):e002314.
[21]Yazaki Y,Salzano A,Nelson PC,et al. Geographical location affects the levels and association of trimethylamine N-oxide with heart failure mortality in BIOSTAT-CHF:a post-hoc analysis[J]. Eur J Heart Fail,2019,21(10):1291-1294.
[22]Miao J,Ling AV,Manthena PV,et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis[J]. Nat Commun,2015,6:6498.
[23]Liu J,Lai L,Lin J,et al. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota[J]. Int J Biol Sci,2020,16(5):790-802.
[24]Liepinsh E,Vilskersts R,Loca D,et al. Mildronate,an inhibitor of carnitine biosynthesis,induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction[J]. J Cardiovasc Pharmacol,2006,48(6):314-319.
[25]Wang Z,Bergeron N,Levison BS,et al. Impact of chronic dietary red meat,white meat,or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women[J]. Eur Heart J,2019,40(7):583-594.
[26]KrügerR,Merz B,Rist MJ,et al. Associations of current diet with plasma and urine TMAO in the KarMeN study:direct and indirect contributions[J]. Mol Nutr Food Res,2017,61(11).DOI:10.1002/mnfr.201700363.
[27]Cheung W,Keski-Rahkonen P,Assi N,et al. A metabolomic study of biomarkers of meat and fish intake[J]. Am J Clin Nutr,2017,105(3):600-608.
[28]Li Q,Wu T,Liu R,et al. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host AMPK pathways[J]. Mol Nutr Food Res,2017,61(12):1700473.
[29]Wu WK,Panyod S,Ho CT,et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods,2015,15:408-417.
[30]Bresciani L,Dall’Asta M,Favari C,et al. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages,fruit juices and oils to control trimethylamine production in the colon[J]. Food Funct,2018,9(12):6470-6483.
[31]Wang Z,Roberts AB,Buffa JA,et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell,2015,163 (7):1585-1595.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(11):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(11):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(11):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(11):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]