参考文献/References:
[1] 胡盛寿,高润霖,刘力生,等. 《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.
[2] Shimada I, Ueda T, Kofuku Y, et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures[J]. Nat Rev Drug Discov,2019,18(1):59-82.
[3] Guo J, Williams DJ, Puhl HL 3rd, et al. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons[J]. J Pharmacol Exp Ther ,2008,324(1):342-351.
[4] Divorty N,Mackenzie AE,Nicklin SA,et al.G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease[J]. Front Pharmacol ,2015,6:41.
[5] Rojewska E, Piotrowska A, Jurga A, et al. Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model[J]. Eur J Pharmacol ,2018,839:21-32.
[6] Resta F, Masi A, Sili M, et al. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation[J]. Neuropharmacology,2016,108:136-143.
[7] Guo YJ, Zhou YJ, Yang XL, et al. The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer[J]. Biochem Biophys Res Commun ,2017,493(3): 1159-1167.
[8] Park SJ, Lee SJ, Nam SY, et al. GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17[J]. Br J Pharmacol,2018,175(1): 154-161.
[9] Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35[J]. J Biol Chem ,2006,281(31): 22021-22028.
[10] Barth MC, Ahluwalia N, Anderson TJ, et al. Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions[J]. J Biol Chem ,2009,284(29):19189-19195.
[11] Zheng X, Hu M, Zang X, et al. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress[J]. Brain Behav Immun ,2019,79:244-255.
[12] Wirthgen E, Otten W, Tuchscherer M, et al. Effects of 1- methyltryptophan on immune responses and the kynurenine pathway after lipopolysaccharide challenge in pigs[J]. Int J Mol Sci ,2018,19(10).pii: E3009. doi: 10.3390/ijms19103009.
[13] Salimi Elizei S, Poormasjedi-Meibod MS, Wang X, et al. Kynurenic acid downregulates IL-17/1L-23 axis in vitro[J]. Mol Cell Biochem ,2017,431(1-2):55-65.
[14] Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells[J]. Cell Death Differ ,2018,25(7):1209-1223.
[15] Song P, Ramprasath T, Wang H, et al. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases[J]. Cell Mol Life Sci ,2017,74(16): 2899-2916.
[16] Shrimpton AE, Braddock BR, Thomson LL, et al. Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype[J]. Clin Genet ,2004,66(6):537-544.
[17] Oxenkrug GF. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes[J]. Mol Neurobiol,2015,52(2):805-810.
[18] Agudelo LZ, Ferreira D, Cervenka I, et al. Kynurenic acid and gpr35 regulate adipose tissue energy homeostasis and inflammation[J]. Cell Metab,2018,27(2):378-392.e5.
[19] 张文博,黄星荷,李静.高血压的流行趋势和治疗进展[J].心血管病学进展,2019,40(03):331-337.
[20] Zakrocka I, Turski WA, Kocki T. Angiotensin-converting enzyme inhibitors modulate kynurenic acid production in rat brain cortex in vitro[J]. Eur J Pharmacol ,2016,789:308-312.
[21] Yang Y, Fu A, Wu X, et al. GPR35 is a target of the loop diuretic drugs bumetanide and furosemide[J]. Pharmacology,2012,89(1-2):13-17.
[22] Ronkainen VP, Tuomainen T, Huusko J, et al. Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling[J]. Cardiovasc Res ,2014,101(1):69-77.
[23] Divorty N, Milligan G, Graham D, et al. The orphan receptor GPR35 contributes to angiotensin II- induced hypertension and cardiac dysfunction in mice[J]. Am J Hypertens,2018,31(9):1049-1058.
[24] McCallum JE, Mackenzie AE, Divorty N, et al. G- protein-coupled receptor 35 mediates human saphenous vein vascular smooth muscle cell migration and endothelial cell proliferation[J]. J Vasc Res ,2015,52(6): 383-395.
[25] Maravillas-Montero JL, Burkhardt AM, Hevezi PA, et al. Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17[J]. J Immunol,2015,194(1):29-33.
[26] Hernández-Ruiz M, Zlotnik A. Mucosal chemokines[J]. J Interferon Cytokine Res,2017,37(2):62-70.
[27] Oka S, Ota R, Shima M, et al. GPR35 is a novel lysophosphatidic acid receptor[J]. Biochem Biophys Res Commun ,2010,395(2):232-237.
[28] Abdel-Latif A, Heron PM, Morris AJ, et al. Lysophospholipids in coronary artery and chronic ischemic heart disease[J]. Curr Opin Lipidol ,2015,26(5):432-437.
[29] 贺磊,杨怡,田玥,等.抑制G蛋白偶联受体35对小鼠缺血性心肌损伤的保护作用[J].解放军医学杂志,2018,64(2):101-106.
[30] Min KD, Asakura M, Liao Y, et al. Identification of genes related to heart failure using global gene expression profiling of human failing myocardium[J]. Biochem Biophys Res Commun ,2010,393(1):55-60.
[31] Milligan G. Orthologue selectivity and ligand bias: translating the pharmacology of GPR35[J]. Trends Pharmacol Sci ,2011,32(5):317-325.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(9):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(9):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(9):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]