[1]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286-1289.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1286-1289.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
点击复制

环状RNA在冠状动脉粥样硬化性心脏病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1286-1289
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
CircRNA in Coronary Atherosclerotic Heart Disease
作者:
石文坚12 花蕾2 孟祥光2 袁义强2
 (1. 南方医科大学,广东 广州 510515 ;2. 郑州市第七人民医院,河南 郑州 450016 )
Author(s):
SHI Wenjian12 HUA Lei2 MENG Xiangguang2 YUAN Yiqiang2
(1.Southern Medical University, Guangzhou 510515, Guangdong,China;2.Zhengzhou 7th People’s Hospital, Zhengzhou 450016, Henan,China)
关键词:
环状RNA动脉粥样硬化冠状动脉粥样硬化性心脏病
Keywords:
Circular RNA Atherosclerosis Coronary heart disease
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.026
摘要:
环状RNA(circRNA)是一类与线性RNA不同的非编码RNA,具有microRNA海绵、与蛋白质形成功能复合物、调控亲本基因表达、翻译成蛋白质等作用。早期文献报道了circRNA与肿瘤、糖尿病、神经系统疾病的发生发展相关,而最新的研究表明circRNA对心血管系统疾病-冠状动脉粥样硬化具有显著影响,并有可能成为新的疾病诊断标志物或新的治疗干预靶点。现主要论述circRNA在冠状动脉粥样硬化性心脏病中的研究与应用。
Abstract:
Circular RNA (circRNA) is a type of non-coding RNA differed from linear RNA, which has the characteristics of multiple functions such as acting as microRNA sponges, forming functional complexes combined with proteins, regulating the expression of parental genes and translating into proteins. Early studies indicated that circRNA was associated with tumor, diabetes and neurological diseases, while latest studies showed that circRNA had a significant impact on coronary _____________________________ 通讯作者:袁义强,E-mail: yuanyiqiang123@126.com atherosclerosis, one of cardiovascular disease, and that it could become either a new diagnostic marker or a novel therapeutic intervention target. Our review mainly discusses the research and application of circRNA in coronary atherosclerotic heart disease

参考文献/References:


[1] Wang L, P eng X, L u X, et al. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: Effects of cicr_0001313 on colon cancer radio-sensitivity [J]. Pathology, research and practice, 2019, 215(4): 689- 696.

[2] Song T, X u A, Z hang Z, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075 [J]. J Cell Physiol, 2019, 234(8): 14296-14305.

[3] Wang G, L iu W, Z ou Y, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway[J]. EBioMedicine, 2019, 40 :432-445.

[4] Yang R, Xing L, Zheng X, et al. The circrna circagfg1 acts as a sponge of mir-195-5p to promote triple-negative breast cancer progression through regulating ccne1 expression [J]. Mol Cancer, 2019,18(1):4.

[5] Shan K, Liu C, Liu BH, et al. Circular noncoding rna hipk3 mediates retinal vascular dysfunction in diabetes mellitus [J]. Circulation, 2017,136(17):1629-1642.

[6] Wang JJ, Liu C, Shan K, et al. Circular rna-znf609 regulates retinal neurodegeneration by acting as mir-615 sponge [J]. Theranostics, 2018,8(12):3408-3415.

[7] 陈伟伟, 高润霖, 刘力生, 等.《中国心血管病报告2017》概要[J].中国循环杂志, 2018,33(1):1-8.

[8] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular rna molecules existing as highly base-paired rod-like structures [J]. Proc Natl Acad Sci U S A,1976,73(11):3852-3856.

[9] Cocquerelle C, Mascrez B, Hetuin D, et al. Mis-splicing yields circular rna molecules [J]. FASEB J, 1993,7(1):155-160.

[10] Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene sry in adult mouse testis [J]. Cell, 1993,73(5):1019-1030.

[11] Hansen TB, Wiklund ED, Bramsen JB, et al. Mirna-dependent gene silencing involving ago2-mediated cleavage of a circular antisense rna [J]. EMBO J, 2011,30(21):4414-4422.

[12] Yang C, Wu D, Gao L, et al. Competing endogenous rna networks in human cancer: Hypothesis, validation, and perspectives[J].Oncotarget, 2016,7(12):13479-13490.

[13] Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular rna [J]. Nature, 1986,323(6088):558-560.

[14] Li Y, Zhang J, Huo C, et al. Dynamic organization of lncrna and circular rna regulators collectively controlled cardiac differentiation in humans [J]. EBioMedicine, 2017,24:137-146.

[15] Xu T, Wu J, Han P, et al. Circular rna expression profiles and features in human tissues: A study using rna-seq data [J]. BMC Genomics, 2017,18(Suppl 6):680.

[16] Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular rnas [J]. Genome Biol, 2014,15(7):409.

[17] Memczak S, Jens M, Elefsinioti A, et al. Circular rnas are a large class of animal rnas with regulatory potency [J]. Nature, 2013,495(7441):333-338.

[18] Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding rnas [J]. Mol Cell, 2013,51(6):792-806.

[19] Jeck WR, Sorrentino JA, Wang K, et al. Circular rnas are abundant, conserved, and associated with alu repeats [J]. RNA, 2013,19(2):141-157.

[20] Conn SJ, Pillman KA, Toubia J, et al. The rna binding protein quaking regulates formation of circrnas [J]. Cell, 2015,160(6):1125-1134.

[21] Khan MA, Reckman YJ, Aufiero S, et al. Rbm20 regulates circular rna production from the titin gene [J]. Circ Res, 2016,119(9):996-1003.

[22] Zaphiropoulos PG. Exon skipping and circular rna formation in transcripts of the human cytochrome p-450 2c18 gene in epidermis and of the rat androgen binding protein gene in testis [J]. Mol Cell Biol, 1997,17(6):2985-2993.

[23] Li Z, Huang C, Bao C, et al. Exon-intron circular rnas regulate transcription in the nucleus [J]. Nat Struct Mol Biol, 2015,22(3):256-264.

[24] Du WW, Yang W, Liu E, et al. Foxo3 circular rna retards cell cycle progression via forming ternary complexes with p21 and cdk2 [J]. Nucleic Acids Res, 2016,44(6):2846-2858.

[25] Du WW, Yang W, Chen Y, et al. Foxo3 circular rna promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017,38(18):1402-1412.

[26] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. Circrna biogenesis competes with pre-mrna splicing [J]. Mol Cell, 2014,56(1):55-66.

[27] Yang Y, Gao X, Zhang M, et al. Novel role of fbxw7 circular rna in repressing glioma tumorigenesis [J]. J Natl Cancer Inst, 2018,110(3).doi: 10.1093/jnci/djx166.

[28] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding rna anril modulates ribosomal rna maturation and atherosclerosis in humans[J]. Nat Commun, 2016,7:12429.

[29] Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular rna expression in the human heart [J]. Cardiovasc Res, 2017,113(3):298-309.

[30] Zhao Z, Li X, Gao C, et al. Peripheral blood circular rna hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep, 2017,7:39918.

[31] Kulcheski FR, Christoff AP, Margis R. Circular rnas are mirna sponges and can be used as a new class of biomarker [J]. J Biotechnol, 2016,238:42-51.

[32] Geng HH, Li R, Su YM, et al. The circular rna cdr1as promotes myocardial infarction by mediating the regulation of mir-7a on its target genes expression [J]. PloS one, 2016,11(3):e0151753.

[33] Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an ink4/arf-associated non-coding rna correlates with atherosclerosis risk [J]. PLoS Genet, 2010,6(12):e1001233.

[34] Holdt LM, Teupser D. Long noncoding rna anril: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis [J]. Front Cardiovasc Med, 2018,5:145.

[35] Zhang F, Zhang R, Zhang X, et al. Comprehensive analysis of circrna expression pattern and circrna-mirna-mrna network in the pathogenesis of atherosclerosis in rabbits [J]. Aging (Albany NY), 2018,10(9):2266-2283.

[36] Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circr-284 to mir-221 levels [J]. Circ Cardiovasc Genet, 2017,10(4).pii: e001720. doi: 10.1161/CIRCGENETICS.117.001720.

[37] Liu C, Yao MD, Li CP, et al. Silencing of circular rna-znf609 ameliorates vascular endothelial dysfunction [J]. Theranostics,2017,7(11):2863-2877.

[38] Li CY, Ma L, Yu B. Circular rna hsa_circ_0003575 regulates oxldl induced vascular endothelial cells proliferation and angiogenesis [J]. Biomed Pharmacother, 2017,95:1514-1519.

[39] Mao YY, Wang JQ, Guo XX, et al. Circ-satb2 upregulates stim1 expression and regulates vascular smooth muscle cell proliferation and differentiation through mir-939 [J]. Biochem Biophys Res Commun, 2018,505(1):119-125.

[40] Hall IF, Climent M, Quintavalle M, et al. Circ_lrp6, a circular rna enriched in vascular smooth muscle cells, acts as a sponge regulating mirna-145 function [J]. Circ Res, 2019,124(4):498-510.

[41] Pan RY, Liu P, Zhou HT, et al. Circular rnas promote trpm3 expression by inhibiting hsa-mir-130a-3p in coronary artery disease patients[J].Oncotarget, 2017,8(36):60280-60290.

[42]Wang L, Shen C, Wang Y, et al. Identification of circular rna hsa_circ_0001879 and hsa_circ_0004104 as novel biomarkers for coronary artery disease[J]. Atherosclerosis, 2019,286:88-96.

[43] 朱艳卫.基于circRNA-miRNA网络相关性探析冠状动脉粥样硬化发病机制[D].新乡医学院,2018, (1):59.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
 LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(9):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]

更新日期/Last Update: 2020-02-06