参考文献/References:
[1] Wang L, P eng X, L u X, et al. Inhibition of hsa_circ_0001313 (circCCDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338-3p: Effects of cicr_0001313 on colon cancer radio-sensitivity [J]. Pathology, research and practice, 2019, 215(4): 689- 696.
[2] Song T, X u A, Z hang Z, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075 [J]. J Cell Physiol, 2019, 234(8): 14296-14305.
[3] Wang G, L iu W, Z ou Y, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway[J]. EBioMedicine, 2019, 40 :432-445.
[4] Yang R, Xing L, Zheng X, et al. The circrna circagfg1 acts as a sponge of mir-195-5p to promote triple-negative breast cancer progression through regulating ccne1 expression [J]. Mol Cancer, 2019,18(1):4.
[5] Shan K, Liu C, Liu BH, et al. Circular noncoding rna hipk3 mediates retinal vascular dysfunction in diabetes mellitus [J]. Circulation, 2017,136(17):1629-1642.
[6] Wang JJ, Liu C, Shan K, et al. Circular rna-znf609 regulates retinal neurodegeneration by acting as mir-615 sponge [J]. Theranostics, 2018,8(12):3408-3415.
[7] 陈伟伟, 高润霖, 刘力生, 等.《中国心血管病报告2017》概要[J].中国循环杂志, 2018,33(1):1-8.
[8] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular rna molecules existing as highly base-paired rod-like structures [J]. Proc Natl Acad Sci U S A,1976,73(11):3852-3856.
[9] Cocquerelle C, Mascrez B, Hetuin D, et al. Mis-splicing yields circular rna molecules [J]. FASEB J, 1993,7(1):155-160.
[10] Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene sry in adult mouse testis [J]. Cell, 1993,73(5):1019-1030.
[11] Hansen TB, Wiklund ED, Bramsen JB, et al. Mirna-dependent gene silencing involving ago2-mediated cleavage of a circular antisense rna [J]. EMBO J, 2011,30(21):4414-4422.
[12] Yang C, Wu D, Gao L, et al. Competing endogenous rna networks in human cancer: Hypothesis, validation, and perspectives[J].Oncotarget, 2016,7(12):13479-13490.
[13] Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular rna [J]. Nature, 1986,323(6088):558-560.
[14] Li Y, Zhang J, Huo C, et al. Dynamic organization of lncrna and circular rna regulators collectively controlled cardiac differentiation in humans [J]. EBioMedicine, 2017,24:137-146.
[15] Xu T, Wu J, Han P, et al. Circular rna expression profiles and features in human tissues: A study using rna-seq data [J]. BMC Genomics, 2017,18(Suppl 6):680.
[16] Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular rnas [J]. Genome Biol, 2014,15(7):409.
[17] Memczak S, Jens M, Elefsinioti A, et al. Circular rnas are a large class of animal rnas with regulatory potency [J]. Nature, 2013,495(7441):333-338.
[18] Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding rnas [J]. Mol Cell, 2013,51(6):792-806.
[19] Jeck WR, Sorrentino JA, Wang K, et al. Circular rnas are abundant, conserved, and associated with alu repeats [J]. RNA, 2013,19(2):141-157.
[20] Conn SJ, Pillman KA, Toubia J, et al. The rna binding protein quaking regulates formation of circrnas [J]. Cell, 2015,160(6):1125-1134.
[21] Khan MA, Reckman YJ, Aufiero S, et al. Rbm20 regulates circular rna production from the titin gene [J]. Circ Res, 2016,119(9):996-1003.
[22] Zaphiropoulos PG. Exon skipping and circular rna formation in transcripts of the human cytochrome p-450 2c18 gene in epidermis and of the rat androgen binding protein gene in testis [J]. Mol Cell Biol, 1997,17(6):2985-2993.
[23] Li Z, Huang C, Bao C, et al. Exon-intron circular rnas regulate transcription in the nucleus [J]. Nat Struct Mol Biol, 2015,22(3):256-264.
[24] Du WW, Yang W, Liu E, et al. Foxo3 circular rna retards cell cycle progression via forming ternary complexes with p21 and cdk2 [J]. Nucleic Acids Res, 2016,44(6):2846-2858.
[25] Du WW, Yang W, Chen Y, et al. Foxo3 circular rna promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017,38(18):1402-1412.
[26] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. Circrna biogenesis competes with pre-mrna splicing [J]. Mol Cell, 2014,56(1):55-66.
[27] Yang Y, Gao X, Zhang M, et al. Novel role of fbxw7 circular rna in repressing glioma tumorigenesis [J]. J Natl Cancer Inst, 2018,110(3).doi: 10.1093/jnci/djx166.
[28] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding rna anril modulates ribosomal rna maturation and atherosclerosis in humans[J]. Nat Commun, 2016,7:12429.
[29] Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular rna expression in the human heart [J]. Cardiovasc Res, 2017,113(3):298-309.
[30] Zhao Z, Li X, Gao C, et al. Peripheral blood circular rna hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep, 2017,7:39918.
[31] Kulcheski FR, Christoff AP, Margis R. Circular rnas are mirna sponges and can be used as a new class of biomarker [J]. J Biotechnol, 2016,238:42-51.
[32] Geng HH, Li R, Su YM, et al. The circular rna cdr1as promotes myocardial infarction by mediating the regulation of mir-7a on its target genes expression [J]. PloS one, 2016,11(3):e0151753.
[33] Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an ink4/arf-associated non-coding rna correlates with atherosclerosis risk [J]. PLoS Genet, 2010,6(12):e1001233.
[34] Holdt LM, Teupser D. Long noncoding rna anril: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis [J]. Front Cardiovasc Med, 2018,5:145.
[35] Zhang F, Zhang R, Zhang X, et al. Comprehensive analysis of circrna expression pattern and circrna-mirna-mrna network in the pathogenesis of atherosclerosis in rabbits [J]. Aging (Albany NY), 2018,10(9):2266-2283.
[36] Bazan HA, Hatfield SA, Brug A, et al. Carotid plaque rupture is accompanied by an increase in the ratio of serum circr-284 to mir-221 levels [J]. Circ Cardiovasc Genet, 2017,10(4).pii: e001720. doi: 10.1161/CIRCGENETICS.117.001720.
[37] Liu C, Yao MD, Li CP, et al. Silencing of circular rna-znf609 ameliorates vascular endothelial dysfunction [J]. Theranostics,2017,7(11):2863-2877.
[38] Li CY, Ma L, Yu B. Circular rna hsa_circ_0003575 regulates oxldl induced vascular endothelial cells proliferation and angiogenesis [J]. Biomed Pharmacother, 2017,95:1514-1519.
[39] Mao YY, Wang JQ, Guo XX, et al. Circ-satb2 upregulates stim1 expression and regulates vascular smooth muscle cell proliferation and differentiation through mir-939 [J]. Biochem Biophys Res Commun, 2018,505(1):119-125.
[40] Hall IF, Climent M, Quintavalle M, et al. Circ_lrp6, a circular rna enriched in vascular smooth muscle cells, acts as a sponge regulating mirna-145 function [J]. Circ Res, 2019,124(4):498-510.
[41] Pan RY, Liu P, Zhou HT, et al. Circular rnas promote trpm3 expression by inhibiting hsa-mir-130a-3p in coronary artery disease patients[J].Oncotarget, 2017,8(36):60280-60290.
[42]Wang L, Shen C, Wang Y, et al. Identification of circular rna hsa_circ_0001879 and hsa_circ_0004104 as novel biomarkers for coronary artery disease[J]. Atherosclerosis, 2019,286:88-96.
[43] 朱艳卫.基于circRNA-miRNA网络相关性探析冠状动脉粥样硬化发病机制[D].新乡医学院,2018, (1):59.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(9):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(9):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(9):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(9):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(9):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(9):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]