[1]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996-999.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):996-999.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
点击复制

MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年7期
页码:
996-999
栏目:
综述
出版日期:
2019-10-25

文章信息/Info

Title:
microRNA as a Diagnostic Biomarker for Atherosclerosis
作者:
耿春晖 关秀茹
春晖 关秀茹(哈尔滨医科大学附属第一医院检验科,黑龙江 哈尔滨150001)
Author(s):
GENG Chunhui GUAN Xiuru
(Department of Clinical laboratory, First Affiliated Hospital, Harbin 150001, heilongjiang, China)
关键词:
动脉粥样硬化小的非编码RNAs生物标志物
Keywords:
Atherosclerosis MicroRNAs Biomarker
DOI:
10.16806/j.cnki.issn.1004-3934.2019.07.008
摘要:
动脉粥样硬化是由脂质代谢紊乱和慢性炎症导致的疾病。随着个体化和精准医疗的发展,早期精确诊断动脉粥样硬化对临床工作开展意义重大。由于小的非编码RNAs能调节炎症蛋白含量干扰脂质的形成,因此研究小的非编码RNAs作为生物学标志物给动脉粥样硬化的快速诊断带来了新的希望。整合近年文献,通过探讨小的非编码RNAs对动脉粥样硬化的病理机制的影响,阐明其作为动脉粥样硬化生物标志物的意义。
Abstract:
Atherosclerosis (AS) is a disease caused by disorders of lipid metabolism and chronic inflammation. With the development of individualization and precision medicine, accurate early diagnosis of AS is of great significance. Small non-coding RNAs (microRNAs) regulate inflammatory protein levels and interfere with lipid formation, thus microRNAs as biomarkers has brought new insights for the early diagnosis for AS. This paper integrates recent literature and explores the significance of microRNAs as a biomarker for AS

参考文献/References:

[1].Zhang PY,Xu X,Li XC.Cardiovascular diseases: oxidative damage and antioxidant protection [J].Eur Rev Med Pharmacol,2014,18(20):3091-3096.
[2].Gistera A,Hansson GK.The immunology of atherosclerosis[J].Nat Rev Nephrol, 2017, 13(6):368-380.
[3].Moriya J.Critical roles of inflammation in atherosclerosis[J].J Cardiol, 2019, 73(1):22-27.
[4].Martens CR, Bansal SS,Accornero F. Cardiovascular inflammation: RNA takes the lead[J].J Mol Cell Cardiol,2019,129:247-256.
[5].Ojha R,Nandani R,Pandey RK,et al.Emerging role of circulating microRNA in the diagnosis of human infectious diseases[J].Cellular Physology,2019,234(2): 1030-1043.
[6].Fan R,Xiao C,Wan X,et al.Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics[J].RNA Biol,2019,16(6):707-708.
[7].Mohr AM,Mott JL.Overview of microRNA biology[J].Semin Liver Dis,2015, 35(1):3-11.
[8].Mohr AM,Mott JL.Overview of microRNA biology[J].Semin Liver Dis,2015, 35(1):3-11.(与7重复!!!)
[9].Paiva S,Agbulut O.MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction[J].Front Cardiovasc Med,2017,4:73.
[10].Lin J,Ma L,Zhang D,et al.Tumour biomarkers-Tracing the molecular function and clinical implication[J].Cell Proliferation,2019,52(3):e12589.
[11].Zhang X,Ang Q,Wang W.Application research on ultrasonic blood flow velocity measurement [J].Zhongguo Yi Liao Qi Xie Za Zhi,2014,38(1):53-56.
[12].Orso E,Schmitz G.Lipoprotein(a) and its role in inflammation,atherosclerosis and malignancies[J].Clin Res Cardiol Suppl,2017,12(Suppl 1): 31-37.
[13].Xu W,Chen B,Guo L,et al.High-sensitivity CRP: possible link between job stress and atherosclerosis[J].Am J Ind Med,2015,58(7): 773-779.
[14].Morrison M,van der Heijden R,Heeringa P, et al.Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFkappaB in vivo[J]. Atherosclerosis,2014,233(1):149-156.
[15].Yoshida M,Higashi K,Kobayashi E,et al.Correlation between images of silent brain infarction, carotid atherosclerosis and white matter hyperintensity, and plasma levels of acrolein, IL-6 and CRP[J].Atherosclerosis,2010,211(2):475-479.
[16].Liu J,Yang B,Ai J.Advance in research of microRNA in Caenorhabditis elegans[J].J Cell Biochem,2013,114(5):994-1000.
[17].Koroleva IA,Nazarenko MS,Kucher AN.Role of microRNA in Development of Instability of Atherosclerotic Plaques[J].Biochemistry (Mosc),2017,82(11): 1380-1390.
[18].Hung J,Miscianinov V,Sluimer JC,et al.Targeting Non-coding RNA in Vascular Biology and Disease[J]. Front Physiol,2018,9:1655.
[19].Raitoharju E,Lyytikainen LP,Levula M,et al.miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study[J].Atherosclerosis,2011,219(1): 211-217.
[20].Han H,Qu G,Han C,et al.MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort[J].Exp Mol Med,2015,47:e138.
[21].Wang S,Aurora AB,Johnson BA,et al.The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J].Dev Cell,2008,15(2): 261-271.
[22].Suarez Y,Wang C,Manes TD,et al.Cutting edge:TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation[J]. J Immunol,2010,184(1):21-25.
[23].Tang Y,Zhang YC,Chen Y, et al.The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease [J].Sci Rep,2015,5:15132.
[24].Elia L,Quintavalle M,Zhang J,et al.The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease[J].Cell Death Differ,2009,16(12):1590-1598.
[25].Lovren F,Pan Y,Quan A,et al.MicroRNA-145 targeted therapy reduces atherosclerosis[J]. Circulation,2012,126(11 Suppl 1):S81-90.
[26].Torella D,Iaconetti C,Catalucci D,et al.MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J].Circ Res,2011,109(8): 880-893.
[27].Cipollone F,Felicioni L,Sarzani R,et al.A unique microRNA signature associated with plaque instability in humans[J].Stroke,2011,42(9):2556-2563.
[28].Wang J,Zhang C,Li C,et al.MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway[J].Cell Mol Med,2019,23(5):3696-3710.
[29].Wei Y,Zhu M,Schober A.Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer[J].Int J Mol Sci,2018, 19(6):1756
[30].Yang S,Li J,Chen Y,et al.MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-kappaB pathway[J]. Biochim Biophys Acta Mol Basis Dis,2019, 1865(7): 1772-1781.
[31].Yang S,Ye ZM,Chen S, et al.MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages [J]. J Mol Cell Cardiol,2018,123:139-149.
[32].Chen W,Li X,Wang J,et al.miR-378a Modulates Macrophages Phagocytosis and Differentiation through targeting CD47-SIRPalpha axis in Atherosclerosis[J]. Scand J Immunol,2019,90(1):e12766.
[33].Zhi H,Yuan N,Wu JP,et al.MicroRNA-21 attenuates BDE-209-induced lipid accumulation in THP-1 macrophages by downregulating Toll-like receptor 4 expression[J].Food Chem Toxicol,2019,125:71-77.
[34].Tan L,Liu L,Jiang Z,et al.Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis[J].J Pharmacol Sci,2019,139(4):280-288.
[35].Horie T,Baba O,Kuwabara Y,et al.MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice[J].J Am Heart Assoc,2012, 1(6):e003376.
[36].Huang RS, Hu GQ, Lin B, et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages [J].J Investig Med,2010, 58(8): 961-967.
[37].Zhang Y,Zhang L,Wang Y,et al.MicroRNAs or Long Noncoding RNAs in Diagnosis and Prognosis of Coronary Artery Disease[J]. Aging Dis,2019,10(2): 353-366.
[38].Wang Z,Zhang J,Zhang S,et al.MiR30e and miR92a are related to atherosclerosis by targeting ABCA1[J].Mol Med Rep,2019,19(4):3298-3304.
[39].Li L,Masica D,Ishida M,et al.Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis[J].Hepatology,2014, 60(3): 896-907.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[3]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(7):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[4]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[5]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[6]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(7):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
 LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(7):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]

更新日期/Last Update: 2019-12-16