参考文献/References:
[1] Chen J,Jiang Y,Shi H,et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflug Arch,2020,472(10):1415-1429.
[2] Tsvetkov P,Coy S,Petrova B,et al.Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science,2022,375(6586):1254-1261.
[3] Mc Namara K,Alzubaidi H,Jackson JK. Cardiovascular disease as a leading cause of death:how are pharmacists getting involved?[J]. Integr Pharm Res Pract, 2019,8:1-11.
[4] Chen L,Min J,Wang F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther,2022,7(1):378.
[5] Ruiz LM,Libedinsky A,Elorza AA. Role of copper on mitochondrial function and metabolism[J]. Front Mol Biosci,2021,8:711227.
[6] Zhang Z,Weichenthal S,Kwong JC,et al. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs[J]. Environ Sci Technol,2021,55(6):3807-3818.
[7] Grubman A,White AR. Copper as a key regulator of cell signalling pathways[J]. Expert Rev Mol Med,2014,16:e11.
[8] Galler T,Lebrun V,Raibaut L,et al. How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry[J]. Chem Commun (Camb),2020,56(81):12194-12197.
[9] Chen Z,Li YY,Liu X.Copper homeostasis and copper-induced cell death:novel targeting for intervention in the pathogenesis of vascular aging[J]. Biomed Pharmacother,2023,169:115839.
[10] Yang L,Yang P,Lip GYH,et al. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics[J]. Trends Pharmacol Sci,2023,44(9):573-585.
[11] Das A,Sudhahar V,Ushio-Fukai M,et al. Novel interaction of antioxidant-1 with TRAF4:role in inflammatory responses in endothelial cells[J]. Am J Physiol Cell Physiol,2019,317(6):C1161-C1171.
[12] Bian C,Zheng Z,Su J,et al. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies[J]. Front Pharmacol,2023,14:1271613.
[13] Cai DH,Liang BF,Chen BH,et al. A novel water-soluble Cu(Ⅱ) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms[J]. J Inorg Biochem,2023,246:112299.
[14]Husain N,Mahmood R. Copper(Ⅱ) generates ROS and RNS,impairs antioxidant system and damages membrane and DNA in human blood cells[J]. Environ Sci Pollut Res Int,2019,26(20):20654-20668.
[15] Blades B,Ayton S,Hung YH,et al. Copper and lipid metabolism:a reciprocal relationship[J]. Biochim Biophys Acta Gen Subj,2021,1865(11):129979.
[16] Kitazawa M,Hsu HW,Medeiros R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta[J]. Toxicol Sci,2016,152(1):194-204.
[17] Chen J,Lan C,An H,et al. Potential interference on the lipid metabolisms by serum copper in a women population:a repeated measurement study[J]. Sci Total Environ,2021,760:143375.
[18] Li Q,Liao J,Lei C,et al. Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs[J]. Ecotoxicol Environ Saf,2021,213:112040.
[19] Alqarni MH,Muharram MM,Alshahrani SM,et al. Copper-induced oxidative cleavage of glutathione transferase F1-1 from Zea mays[J]. Int J Biol Macromol,2019,128:493-498.
[20] Herrington W,Lacey B,Sherliker P,et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease[J]. Circ Res,2016,118(4):535-546.
[21] Chen X,Cai Q,Liang R,et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J]. Cell Death Dis,2023,14(2):105.
[22] Kohno T,Urao N,Ashino T,et al. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury[J]. Arterioscler Thromb Vasc Biol,2013,33(4):805-813.
[23] Kong P,Cui ZY,Huang XF,et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther,2022,7(1):131.
[24] Zhao YC,Zhang Y,Jiang DY,et al. Two Cu(Ⅱ) coordination polymers:heterogeneous catalytic Knoevenagel condensation reaction and treatment activity on atherosclerosis via regulating the expression of the COX-2 in vascular endothelial cells[J]. J Inorg Biochem,2021,220:111464.
[25] Li H,Zhao L,Wang T,et al. Dietary cholesterol supplements disturb copper homeostasis in multiple organs in rabbits:aorta copper concentrations negatively correlate with the severity of atherosclerotic lesions[J]. Biol Trace Elem Res,2022,200(1):164-171.
[26] Tasi? NM,Tasi? D,Ota?evi? P,et al. Copper and zinc concentrations in atherosclerotic plaque and serum in relation to lipid metabolism in patients with carotid atherosclerosis[J]. Vojnosanit Pregl,2015,72(9):801-806.
[27] Zheng J,Chen P,Zhong J,et al. HIF-1α in myocardial ischemia-reperfusion injury(review)[J]. Mol Med Rep,2021,23(5):352.
[28] Mirończuk A,Kapica-Topczewska K,Socha K,et al. Selenium,copper,zinc concentrations and Cu/Zn,Cu/Se molar ratios in the serum of patients with acute ischemic stroke in northeastern Poland—A new insight into stroke pathophysiology[J]. Nutrients,2021,13(7):2139.
[29] Yang L,Chen X,Cheng H,et al. Dietary copper intake and risk of stroke in adults:a case-control study based on National Health and Nutrition Examination survey 2013-2018[J]. Nutrients,2022,14(3):409.
[30] Karadas S,Say?n R,Aslan M,et al. Serum levels of trace elements and heavy metals in patients with acute hemorrhagic stroke[J]. J Membr Biol,2014,247(2):175-180.
[31] Sakata H,Niizuma K,Wakai T,et al. Neural stem cells genetically modified to overexpress Cu/Zn-superoxide dismutase enhance amelioration of ischemic stroke in mice[J]. Stroke,2012,43(9):2423-2429.
[32] Vest KE,Hashemi HF,Cobine PA. The copper metallome in eukaryotic cells[J]. Met Ions Life Sci,2013,12:451-478.
[33] Jiang Y,Wang LP,Dong XH,et al. Trace amounts of copper in drinking water aggravate cerebral ischemic injury via impairing endothelial progenitor cells in mice[J]. CNS Neurosci Ther,2015,21(8):677-680.
[34] Xu J,Xu G,Fang J. Association between serum copper and stroke risk factors in adults:evidence from the National Health and Nutrition Examination survey,2011-2016[J]. Biol Trace Elem Res,2022,200(3):1089-1094.
[35] Bueno H,Moura B,Lancellotti P,et al. The year in cardiovascular medicine 2020:heart failure and cardiomyopathies[J]. Eur Heart J,2021,42(6):657-670.
[36] Zhang S,Liu H,Amarsingh GV,et al. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure[J]. Metallomics,2020,12(2):259-272.
[37]Liu J,Chen C,Liu Y,et al. Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats[J]. Exp Biol Med(Maywood),2018,243(14):1141-1152.
[38] Liu S,Zhao Y,Shen M,et al. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis[J]. J Mater Chem B,2022,10(4):562-570.
[39] Li SR,Bu LL,Cai L. Cuproptosis:lipoylated TCA cycle proteins-mediated novel cell death pathway[J]. Signal Transduct Target Ther,2022,7(1):158.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(9):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(9):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(9):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]