[1]董程.铜死亡与心血管疾病的研究进展[J].心血管病学进展,2024,(9):830.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.014]
 DONG Cheng.Copper Death and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2024,(9):830.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.014]
点击复制

铜死亡与心血管疾病的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年9期
页码:
830
栏目:
综述
出版日期:
2024-09-25

文章信息/Info

Title:
Copper Death and Cardiovascular Disease
作者:
董程
(西南交通大学附属医院 成都市第三人民医院临床医学检验部, 四川 成都 610031)
Author(s):
DONG Cheng
(Department of Clinical Laboratory Medicine,The Affiliated Hospital of Southwest Jiaotong University,The Third People’s Hospital of Chengdu,Chengdu 610031,Sichuan,China)
关键词:
铜死亡心血管疾病细胞毒性
Keywords:
Copper deathCardiovascular diseaseCytotoxicity
DOI:
10.16806/j.cnki.issn.1004-3934.2024.09.014
摘要:
铜(Cu)是能量代谢、线粒体呼吸及抗氧化等多种生理功能的重要辅因子。铜离子稳态对细胞生理活动是必不可少的,细胞内过量的铜离子导致细胞蛋白毒性死亡。此外,铜有Cu2+和Cu+两种形式,铜的氧化还原反应对细胞是一把双刃剑。心血管疾病是全世界人口死亡的主要病因。铁死亡的细胞机制已经清晰,但铜死亡诱导心血管疾病的细胞毒性机制仍未阐明。现对铜死亡与心血管疾病的研究进展做一综述。
Abstract:
Copper(Cu) is an important cofactor in many physiological functions such as energy metabolism,mitochondrial respiration and antioxidant. Copper ion homeostasis is essential for cell physiological activities. The excess of copper ions in the cell leads to the toxic death of cell proteins. In addition,copper comes in two forms,Cu 2+ and Cu +. The redox reaction of copper is a double-edged sword for cells. Cardiovascular disease is the leading cause of death worldwide. The cellular mechanism of iron death has been clarified,but the cytotoxic mechanism of copper death induced cardiovascular disease has not been elucidated. This paper reviews the research progress on copper death and cardiovascular disease.

参考文献/References:

[1] Chen J,Jiang Y,Shi H,et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflug Arch,2020,472(10):1415-1429.

[2] Tsvetkov P,Coy S,Petrova B,et al.Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science,2022,375(6586):1254-1261.

[3] Mc Namara K,Alzubaidi H,Jackson JK. Cardiovascular disease as a leading cause of death:how are pharmacists getting involved?[J]. Integr Pharm Res Pract, 2019,8:1-11.

[4] Chen L,Min J,Wang F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther,2022,7(1):378.

[5] Ruiz LM,Libedinsky A,Elorza AA. Role of copper on mitochondrial function and metabolism[J]. Front Mol Biosci,2021,8:711227.

[6] Zhang Z,Weichenthal S,Kwong JC,et al. A population-based cohort study of respiratory disease and long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species generation in human lungs[J]. Environ Sci Technol,2021,55(6):3807-3818.

[7] Grubman A,White AR. Copper as a key regulator of cell signalling pathways[J]. Expert Rev Mol Med,2014,16:e11.

[8] Galler T,Lebrun V,Raibaut L,et al. How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry[J]. Chem Commun (Camb),2020,56(81):12194-12197.

[9] Chen Z,Li YY,Liu X.Copper homeostasis and copper-induced cell death:novel targeting for intervention in the pathogenesis of vascular aging[J]. Biomed Pharmacother,2023,169:115839.

[10] Yang L,Yang P,Lip GYH,et al. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics[J]. Trends Pharmacol Sci,2023,44(9):573-585.

[11] Das A,Sudhahar V,Ushio-Fukai M,et al. Novel interaction of antioxidant-1 with TRAF4:role in inflammatory responses in endothelial cells[J]. Am J Physiol Cell Physiol,2019,317(6):C1161-C1171.

[12] Bian C,Zheng Z,Su J,et al. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies[J]. Front Pharmacol,2023,14:1271613.

[13] Cai DH,Liang BF,Chen BH,et al. A novel water-soluble Cu(Ⅱ) gluconate complex inhibits cancer cell growth by triggering apoptosis and ferroptosis related mechanisms[J]. J Inorg Biochem,2023,246:112299.

[14]Husain N,Mahmood R. Copper(Ⅱ) generates ROS and RNS,impairs antioxidant system and damages membrane and DNA in human blood cells[J]. Environ Sci Pollut Res Int,2019,26(20):20654-20668.

[15] Blades B,Ayton S,Hung YH,et al. Copper and lipid metabolism:a reciprocal relationship[J]. Biochim Biophys Acta Gen Subj,2021,1865(11):129979.

[16] Kitazawa M,Hsu HW,Medeiros R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta[J]. Toxicol Sci,2016,152(1):194-204.

[17] Chen J,Lan C,An H,et al. Potential interference on the lipid metabolisms by serum copper in a women population:a repeated measurement study[J]. Sci Total Environ,2021,760:143375.

[18] Li Q,Liao J,Lei C,et al. Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs[J]. Ecotoxicol Environ Saf,2021,213:112040.

[19] Alqarni MH,Muharram MM,Alshahrani SM,et al. Copper-induced oxidative cleavage of glutathione transferase F1-1 from Zea mays[J]. Int J Biol Macromol,2019,128:493-498.

[20] Herrington W,Lacey B,Sherliker P,et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease[J]. Circ Res,2016,118(4):535-546.

[21] Chen X,Cai Q,Liang R,et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J]. Cell Death Dis,2023,14(2):105.

[22] Kohno T,Urao N,Ashino T,et al. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury[J]. Arterioscler Thromb Vasc Biol,2013,33(4):805-813.

[23] Kong P,Cui ZY,Huang XF,et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther,2022,7(1):131.

[24] Zhao YC,Zhang Y,Jiang DY,et al. Two Cu(Ⅱ) coordination polymers:heterogeneous catalytic Knoevenagel condensation reaction and treatment activity on atherosclerosis via regulating the expression of the COX-2 in vascular endothelial cells[J]. J Inorg Biochem,2021,220:111464.

[25] Li H,Zhao L,Wang T,et al. Dietary cholesterol supplements disturb copper homeostasis in multiple organs in rabbits:aorta copper concentrations negatively correlate with the severity of atherosclerotic lesions[J]. Biol Trace Elem Res,2022,200(1):164-171.

[26] Tasi? NM,Tasi? D,Ota?evi? P,et al. Copper and zinc concentrations in atherosclerotic plaque and serum in relation to lipid metabolism in patients with carotid atherosclerosis[J]. Vojnosanit Pregl,2015,72(9):801-806.

[27] Zheng J,Chen P,Zhong J,et al. HIF-1α in myocardial ischemia-reperfusion injury(review)[J]. Mol Med Rep,2021,23(5):352.

[28] Mirończuk A,Kapica-Topczewska K,Socha K,et al. Selenium,copper,zinc concentrations and Cu/Zn,Cu/Se molar ratios in the serum of patients with acute ischemic stroke in northeastern Poland—A new insight into stroke pathophysiology[J]. Nutrients,2021,13(7):2139.

[29] Yang L,Chen X,Cheng H,et al. Dietary copper intake and risk of stroke in adults:a case-control study based on National Health and Nutrition Examination survey 2013-2018[J]. Nutrients,2022,14(3):409.

[30] Karadas S,Say?n R,Aslan M,et al. Serum levels of trace elements and heavy metals in patients with acute hemorrhagic stroke[J]. J Membr Biol,2014,247(2):175-180.

[31] Sakata H,Niizuma K,Wakai T,et al. Neural stem cells genetically modified to overexpress Cu/Zn-superoxide dismutase enhance amelioration of ischemic stroke in mice[J]. Stroke,2012,43(9):2423-2429.

[32] Vest KE,Hashemi HF,Cobine PA. The copper metallome in eukaryotic cells[J]. Met Ions Life Sci,2013,12:451-478.

[33] Jiang Y,Wang LP,Dong XH,et al. Trace amounts of copper in drinking water aggravate cerebral ischemic injury via impairing endothelial progenitor cells in mice[J]. CNS Neurosci Ther,2015,21(8):677-680.

[34] Xu J,Xu G,Fang J. Association between serum copper and stroke risk factors in adults:evidence from the National Health and Nutrition Examination survey,2011-2016[J]. Biol Trace Elem Res,2022,200(3):1089-1094.

[35] Bueno H,Moura B,Lancellotti P,et al. The year in cardiovascular medicine 2020:heart failure and cardiomyopathies[J]. Eur Heart J,2021,42(6):657-670.

[36] Zhang S,Liu H,Amarsingh GV,et al. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure[J]. Metallomics,2020,12(2):259-272.

[37]Liu J,Chen C,Liu Y,et al. Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats[J]. Exp Biol Med(Maywood),2018,243(14):1141-1152.

[38] Liu S,Zhao Y,Shen M,et al. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis[J]. J Mater Chem B,2022,10(4):562-570.

[39] Li SR,Bu LL,Cai L. Cuproptosis:lipoylated TCA cycle proteins-mediated novel cell death pathway[J]. Signal Transduct Target Ther,2022,7(1):158.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(9):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(9):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(9):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

更新日期/Last Update: 2024-10-17