[1]赵文巧 朱柏俊 刘宇峰 曹明欣 邓凯 吴心欣 吴华英.肌球蛋白靶向亚基家族与心血管疾病[J].心血管病学进展,2023,(11):991.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.008]
 ZHAO WenqiaoZHU BojunLIU YufengCAO MingxinDENG KaiWU XinxinWU Huaying.MYPT Family and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2023,(11):991.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.008]
点击复制

肌球蛋白靶向亚基家族与心血管疾病()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
991
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
MYPT Family and Cardiovascular Disease
作者:
赵文巧 朱柏俊 刘宇峰 曹明欣 邓凯 吴心欣 吴华英
(湖南师范大学医学院,湖南 长沙 410013)
Author(s):
ZHAO WenqiaoZHU BojunLIU YufengCAO MingxinDENG KaiWU XinxinWU Huaying
(Hunan Normal University School of Medicine, Changsha 410013, Hunan, China)
关键词:
MYPT心血管疾病MYPT1MYPT2
Keywords:
MYPTCardiovascular diseaseMYPT1MYPT2
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.008
摘要:
肌球蛋白靶向亚基(MYPT)家族包含5个成员,MYPT可通过其自身磷酸化影响肌球蛋白轻链磷酸酶(MLCP)活性与细胞功能,调控Rho/ROCK通路和NO/cGMP/PKG通路,从而在心血管疾病的发生发展中发挥重要作用。现就MYPT家族成员的结构,与细胞功能及信号通路的关系及其在心血管疾病中的作用机制进行综述,为心血管疾病的研究和治疗提供理论基础。
Abstract:
Myosin phosphatase targeting subunit (MYPT) family consists of five members. They can influence the activity of myosin light chain phosphatase ( MLCP) and cell function ,regulating Rho/ROCK pathway and NO/cGMP/PKG pathway through their own phosphorylation ,thus playing an important role in the occurrence and development of cardiovascular disease. This article reviews the structure of MYPT family members,their relationship with cell functions and signaling pathways,and their mechanism of action in cardiovascular disease,so as to provide a theoretical basis for the research and treatment of cardiovascular disease

参考文献/References:

[1].Li Y,Cao GY,Jing WZ,et al. Global trends and regional differences in incidence and mortality of cardiovascular disease,1990-2019:findings from 2019 global burden of disease study[J]. Eur J Prev Cardiol,2023,30(3):276-286.
[2].Pinheiro AS,Marsh JA,Forman-Kay JD,et al. Structural signature of the MYPT1-PP1 interaction[J]. J Am Chem Soc,2011,133(1):73-80.
[3].Grassie ME,Moffat LD,Walsh MP,et al. The myosin phosphatase targeting protein (MYPT) family:a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ[J]. Arch Biochem Biophys,2011,510(2):147-159.
[4].Ogut O,Brozovich FV. The potential role of MLC phosphatase and MAPK signalling in the pathogenesis of vascular dysfunction in heart failure[J]. J Cell Mol Med,2008,12(6A):2158-2164.
[5].Kimura K,Ito M,Amano M,et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase)[J]. Science,1996,273(5272):245-248.
[6].Tan I,Ng CH,Lim L,et al. Phosphorylation of a novel myosin binding subunit of protein phosphatase 1 reveals a conserved mechanism in the regulation of actin cytoskeleton[J]. J Biol Chem,2001,276(24):21209-21216.
[7].Skinner JA,Saltiel AR. Cloning and identification of MYPT3:a prenylatable myosin targetting subunit of protein phosphatase 1[J]. Biochem J,2001,356(Pt 1):257-267.
[8].Boratkó A,Csortos C. TIMAP,the versatile protein phosphatase 1 regulator in endothelial cells[J]. IUBMB Life,2017,69(12):918-928.
[9].Kuo IY,Ehrlich BE. Signaling in muscle contraction[J]. Cold Spring Harb Perspect Biol,2015,7(2):a006023.
[10].Alessi D,MacDougall LK,Sola MM,et al. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1[J]. Eur J Biochem,1992,210(3):1023-1035.
[11].Matsumura F,Hartshorne DJ. Myosin phosphatase target subunit:Many roles in cell function[J]. Biochem Biophys Res Commun,2008,369(1):149-156.
[12].Komatsu S,Yano T,Shibata M,et al. Effects of the regulatory light chain phosphorylation of myosin Ⅱ on mitosis and cytokinesis of mammalian cells[J]. J Biol Chem ,2000,275(44):34512-34520.
[13].Fukui Y,De Lozanne A,Spudich JA. Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant[J]. J Cell Biol,1990,110(2):367-378.
[14].Kolega J,Kumar S. Regulatory light chain phosphorylation and the assembly of myosin Ⅱ into the cytoskeleton of microcapillary endothelial cells[J]. Cell Motil Cytoskeleton ,1999,43(3):255-268.
[15].Fehon RG,McClatchey AI,Bretscher A. Organizing the cell cortex:the role of ERM proteins[J]. Nat Rev Mol Cell Biol,2010,11(4):276-287.
[16].Kiss A,Erd?di F,Lontay B. Myosin phosphatase:Unexpected functions of a long-known enzyme[J]. Biochim Biophys Acta Mol Cell Res,2019,1866:2-15.
[17].Amano M,Kaneko T,Maeda A,et al. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase[J]. J Neurochem,2003,87(3):780-790.
[18].Li H,Peng W,Jian W,et al. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion[J]. Cardiovasc Diabetol,2012,11:65.
[19].Nelson WJ,Drees F,Yamada S. Interaction of cadherin with the actin cytoskeleton[J]. Novartis Found Symp,2005,269:159-168;discussion 168-177,223-230.
[20].Noma K,Oyama N,Liao JK. Physiological role of ROCKs in the cardiovascular system[J]. Am J Physiol Cell Physiol,2006,290(3):C661-C668.
[21].Hartmann S,Ridley AJ,Lutz S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease[J]. Front Pharmacol,2015,6:276.
[22].Seccia TM,Rigato M,Ravarotto V,et al. ROCK (RhoA/Rho Kinase) in cardiovascular-renal pathophysiology:a review of new advancements[J]. J Clin Med,2020,9(5):1328.
[23].Montezano AC,Nguyen Dinh Cat A,Rios FJ,et al. Angiotensin Ⅱ and vascular injury[J]. Curr Hypertens Rep ,2014,16(6):431.
[24].Sánchez-Fernández G,Cabezudo S,García-Hoz C,et al. Gαq signalling:the new and the old[J]. Cell Signal,2014,26(5):833-848.
[25].Shimizu T,Liao JK. Rho kinases and cardiac remodeling[J]. Circ J,2016,80(7):1491-1498.
[26].Somlyo AP,Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin Ⅱ:modulated by G proteins,kinases,and myosin phosphatase[J]. Physiol Rev,2003,83 (4):1325-1358.
[27].Ocaranza MP,Jalil JE,Altamirano R,et al. Reverse remodeling in human heart failure after cardiac resynchronization therapy is associated with reduced RHO-kinase activation[J]. Front Pharmacol,2021,12:565724.
[28].Rolfe BE,Worth NF,World CJ,et al. Rho and vascular disease[J]. Atherosclerosis,2005,183(1):1-16.
[29].Surks HK,Mochizuki N,Kasai Y,et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha[J]. Science,1999,286(5444):1583-1587.
[30].Khatri JJ,Joyce KM,Brozovich FV,et al. Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation[J]. J Biol Chem,2001,276(40):37250-37257.
[31].Wooldridge AA,MacDonald JA,Erdodi F,et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides[J]. J Biol Chem,2004,279(33):34496-34504.
[32].Huang J,Shelton JM,Richardson JA,et al. Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy[J]. J Biol Chem,2008,283(28):19748-19756.
[33].Kamm KE,Stull JT. Signaling to myosin regulatory light chain in sarcomeres[J]. J Biol Chem,2011,286(12):9941-9947.
[34].Chan JY,Takeda M,Briggs LE,et al. Identification of cardiac-specific myosin light chain kinase[J]. Circ Res,2008,102(5):571-580.
[35].Chang AN,Mahajan P,Knapp S,et al. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and-independent kinase activities[J]. Proc Natl Acad Sci U S A,2016,113(27):E3824-E3833.
[36].Lee E,Liu Z,Nguyen N,et al. Myosin light chain phosphatase catalytic subunit dephosphorylates cardiac myosin via mechanisms dependent and independent of the MYPT regulatory subunits[J]. J Biol Chem,2022,298(9):102296.
[37].Markandran K,Yu H,Song W,et al. Functional and molecular characterisation of heart failure progression in mice and the role of myosin regulatory light chains in the recovery of cardiac muscle function[J]. Int J Mol Sci,2021,23(1):88.
[38].Chen FC,Ogut O,Rhee AY,et al. Captopril prevents myosin light chain phosphatase isoform switching to preserve normal cGMP-mediated vasodilatation[J]. J Mol Cell Cardiol,2006,41(3):488-495.
[39].Kitazawa T,Eto M,Woodsome TP,et al. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility[J]. J Biol Chem,2000,275(14):9897-9900.
[40].Eto M,Kitazawa T,Brautigan DL. Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits[J]. Proc Natl Acad Sci U S A,2004,101(24):8888-8893.
[41].Uehata M,Ishizaki T,Satoh H,et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J]. Nature,1997,389(6654):990-994.
[42].Shimokawa H. 2014 Williams Harvey Lecture:importance of coronary vasomotion abnormalities-from bench to bedside[J]. Eur Heart J,2014,35(45):3180-3193.
[43].Freynhofer MK,Bruno V,Wojta J,et al. The role of platelets in athero-thrombotic events[J]. Curr Pharm Des,2012,18(33):5197-5214.
[44].Fox JE. The platelet cytoskeleton[J]. Thromb Haemost,1993,70(6):884-893.
[45].Kiss E,Murányi A,Csortos C,et al. Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site in platelet cytoskeleton[J]. Biochem J,2002,365(Pt 1):79-87.
[46].Mallat Z,Gojova A,Sauzeau V,et al. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice[J]. Circ Res,2003,93(9):884-888.
[47].Jin R,Yang G,Li G. Inflammatory mechanisms in ischemic stroke:role of inflammatory cells[J]. J Leukoc Biol,2010,87(5):779-789.
[48].Ding J,Li QY,Wang X,et al. Fasudil protects hippocampal neurons against hypoxia-reoxygenation injury by suppressing microglial inflammatory responses in mice[J]. J Neurochem,2010,114(6):1619-1629.
[49].Shimada H,Rajagopalan LE. Rho kinase-2 activation in human endothelial cells drives lysophosphatidic acid-mediated expression of cell adhesion molecules via NF-kappaB p65[J]. J Biol Chem,2010,285(17):12536-12542.
[50].Sladojevic N,Oh GT,Kim HH,et al. Decreased thromboembolic stroke but not atherosclerosis or vascular remodelling in mice with ROCK2-deficient platelets[J]. Cardiovasc Res,2017,113(11):1307-1317.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(11):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(11):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(11):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(11):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

更新日期/Last Update: 2023-12-13