参考文献/References:
[1] Hindricks G,Potpara T,Dagres N,et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS):The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC[J]. Eur Heart J,2021,42(5):373-498.
[2] Qiu D,Peng L,Ghista DN,et al. Left atrial remodeling mechanisms associated with atrial fibrillation[J]. Cardiovasc Eng Technol,2021,12(3):361-372.
[3] Grune J,Yamazoe M,Nahrendorf M. Electroimmunology and cardiac arrhythmia[J]. Nat Rev Cardiol,2021,18(8):547-564.
[4] Ochando J,Mulder WJM,Madsen JC,et al. Trained immunity - basic concepts and contributions to immunopathology[J]. Nat Rev Nephrol,2023,19(1):23-37.
[5] Ding S,Zhang X,Qiu H,et al. Non-cardiomyocytes in the heart in embryo developmenthealthand diseasea single-cell perspective[J]. Front Cell Dev Biol,2022,10:873264.
[6] Litvinukova M,Talavera-Lopez C,Maatz H,et al. Cells of the adult human heart[J]. Nature,2020,588(7838):466-472.
[7] Suryawanshi H,Clancy R,Morozov P,et al. Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block[J]. Cardiovasc Res,2020,116(8):1446-1457.
[8] Selezneva A,Gibb AJ,Willis D. The contribution of ion channels to shaping macrophage behaviour[J]. Front Pharmacol,2022,13:970234.
[9] Xu R,Li C,Wu Y,et al. Role of KCa3.1 channels in macrophage polarization and its relevance in atherosclerotic plaque instability[J]. Arterioscler Thromb Vasc Biol,2017,37(2):226-236.
[10] Ginefra P,Carrasco HH,Spagna M,et al. Ionic regulation of T-cell function and anti-tumour immunity[J]. Int J Mol Sci,2021,22(24):13668.
[11] Feske S,Wulff H,Skolnik EY. Ion channels in innate and adaptive immunity[J]. Annu Rev Immunol,2015,33:291-353.
[12] Walker JR, Novick PA, Parsons WH, et al. Marked difference in saxitoxin and tetrodotoxin affinity for the human nociceptive voltage-gated sodium channel(Nav1.7) [corrected][J]. Proc Natl Acad Sci U S A, 2012, 109(44):18102-18107.
[13] Montero MC,Del CM,Bono M,et al. Neosaxitoxin inhibits the expression of inflammation markers of the M1 phenotype in macrophages[J]. Mar Drugs,2020,18(6):283.
[14] Clemens RA,Lowell CA. CRAC channel regulation of innate immune cells in health and disease[J]. Cell Calcium,2019,78:56-65.
[15] Bujak JK,Kosmala D,Szopa IM,et al. Inflammation,Cancer and immunity-implication of TRPV1 channel[J]. Front Oncol,2019,9:1087.
[16] Lv Z,Xu X,Sun Z,et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway[J]. Cell Death Dis,2021,12(6):504.
[17] Froghi S,Grant CR,Tandon R,et al. New insights on the role of TRP channels in calcium signalling and immunomodulation review of pathways and implications for clinical practice[J]. Clin Rev Allergy Immunol,2021,60(2):271-292.
[18] Xiao T,Sun M,Kang J,et al. Transient receptor potential vanilloid1 (TRPV1) channel opens sesame of T cell responses and T cell-mediated inflammatory diseases[J]. Front Immunol,2022,13:870952.
[19] Cekic C,Linden J. Purinergic regulation of the immune system[J]. Nat Rev Immunol,2016,16(3):177-192.
[20] Ledderose C,Junger WG. Mitochondria synergize with P2 receptors to regulate human T cell function[J]. Front Immunol,2020,11:549889.
[21] Cacheux M,Strauss B,Raad N,et al. Cardiomyocyte-specific STIM1 (stromal interaction molecule 1) depletion in the Adult Heart Promotes the development of arrhythmogenic discordant alternans[J]. Circ Arrhythm Electrophysiol,2019,12(11):e007382.
[22] Hulsmans M,Clauss S,Xiao L,et al. Macrophages facilitate electrical conduction in the heart[J]. Cell,2017,169(3):510-522.e20.
[23] Simon-Chica A,Fernández MC,Wülfers EM,et al. Novel insights into the electrophysiology of murine cardiac macrophages:relevance of voltage-gated potassium channels[J]. Cardiovasc Res,2022,118(3):798-813.
[24] Tai BY,Lu MK,Yang HY,et al. Ziprasidone induces rabbit atrium arrhythmogenesis via modification of oxidative stress and sodium/calcium homeostasis[J]. Biomedicines,2022,10(5):976.
[25] Cheng WL,Kao YH,Chen YC,et al. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling[J]. Transl Res,2020,216:43-56.
[26] Sun Z,Zhou D,Xie X,et al. Cross-talk between macrophages and atrial myocytes in atrial fibrillation[J]. Basic Res Cardiol,2016,111(6):63.
[27] Lazzerini PE,Laghi-Pasini F,Acampa M,et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling:the role of interleukin-6-mediated changes in connexin expression[J]. J Am Heart Assoc,2019,8(16):e011006.
[28] Xiao M,Zhang M,Bie M,et al. Galectin-3 induces atrial fibrosis by activating the TGF-beta1/Smad pathway in patients with atrial fibrillation[J]. Cardiology,2020,145(7):446-455.
[29] Zhang YL,Cao HJ,Han X,et al. Chemokine receptor CXCR-2 initiates atrial fibrillation by triggering monocyte mobilization in mice[J]. Hypertension,2020,76(2):381-392.
[30] Mukai K,Tsai M,Saito H,et al. Mast cells as sources of cytokineschemokinesand growth factors[J]. Immunol Rev,2018,282(1):121-150.
[31] Rebecchi M,Panattoni G,Edoardo B,et al. Atrial fibrillation and autonomic nervous system:a translational approach to guide therapeutic goals[J]. J Arrhythm,2021,37(2):320-330.
[32] Lyu J,Wang M,Kang X,et al. Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction[J]. Basic Res Cardiol,2020,115(5):56.
[33] Cheng CL,Wei TC,syue YC,et al. Taurine alleviates sympathetic innervation by inhibiting NLRP3 inflammasome in postinfarcted rats[J]. J Cardiovasc Pharmacol,2021,77(6):745-755.
[34] Yang M,Zhang S,Liang J,et al. Different effects of norepinephrine and nerve growth factor on atrial fibrillation vulnerability[J]. J Cardiol,2019,74(5):460-465.
[35] Li J. The role of autoantibodies in arrhythmogenesis[J]. Curr Cardiol Rep,2020,23(1):3.
[36] Ma G,Wu X,Zeng L,et al. Association of autoantibodies against M2-muscarinic acetylcholine receptor with atrial fibrosis in atrial fibrillation patients[J]. Cardiol Res Pract,2019,2019:8271871.
[37] Deng J,Guo Y,Zhang G,et al. M2 muscarinic autoantibodies and thyroid hormone promote susceptibility to atrial fibrillation and sinus tachycardia in an autoimmune rabbit model[J]. Exp Physiol,2021,106(4):882-890.
[38] Shang L,Zhang L,Shao M,et al. Elevated β1-adrenergic receptor autoantibody levels increase atrial fibrillation susceptibility by promoting atrial fibrosis[J]. Front Physiol,2020,11:76.
[39] Sun H,Song J,Li K,et al. Increased beta1-adrenergic receptor antibody confers a vulnerable substrate for atrial fibrillation via mediating Ca2+ mishandling and atrial fibrosis in active immunization rabbit models[J]. Clin Sci (Lond) ,2023,137(2):195-217.
[40] Brundel B,Ai X,Hills MT,et al. Atrial fibrillation[J]. Nat Rev Dis Primers,2022,8(1):21.
[41] Zhao H,Chen Y,Mao M,et al. A meta-analysis of colchicine in prevention of atrial fibrillation following cardiothoracic surgery or cardiac intervention[J]. J Cardiothorac Surg,2022,17(1):224.
[42] Shvartz V,Le T,Kryukov Y,et al. Colchicine for prevention of atrial fibrillation after cardiac surgery in the early postoperative period[J]. J Clin Med,2022,11(5):1387.
[43] Zhang H,Lai Y,Zhou H,et al. Prednisone ameliorates atrial inflammation and fibrosis in atrial tachypacing dogs[J]. Int Heart J,2022,63(2):347-355.
[44] Yue H,Liang W,Zhan Y,et al. Colchicine:emerging therapeutic effects on atrial fibrillation by alleviating myocardial fibrosis in a rat model[J]. Biomed Pharmacother,2022,154:113573.
[45] Li H,Zhang L,Huang B,et al. A peptidomimetic inhibitor suppresses the inducibility of beta1-adrenergic autoantibody-mediated cardiac arrhythmias in the rabbit[J]. J Interv Card Electrophysiol,2015,44(3):205-212.
[46] Dong Y,Bai Y,Zhang S,et al. Cyclic peptide RD808 reduces myocardial injury induced by β1-adrenoreceptor autoantibodies[J]. Heart Vessels,2019,34(6):1040-1051.
相似文献/References:
[1]贺鹏康,周菁.心房颤动治疗新技术——冷冻球囊消融[J].心血管病学进展,2016,(1):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
HE Pengkang,ZHOU Jing.Cryoballoon Ablation, A Novel Technology for Atrial Fibrillation Treatment[J].Advances in Cardiovascular Diseases,2016,(10):1.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.001]
[2]都明辉,施海峰*,佟佳宾,等.心房颤动消融相关性无症状性脑缺血[J].心血管病学进展,2016,(1):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
DU Minghui,SHI Haifeng*,TONG Jiabin,et al.Silent Cerebral Ischemia Related to Atrial Fibrillation Ablation[J].Advances in Cardiovascular Diseases,2016,(10):3.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.002]
[3]郑环杰,综述,肖骅,等.心房颤动抗栓治疗研究进展[J].心血管病学进展,2016,(2):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
ZHENG Huanjie,XIAO Hua.Progress of Antithrombotic Therapy in Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):142.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.012]
[4]张清,综述,罗素新,等.新型Xa 因子抑制剂———依度沙班在心房颤动患者抗凝治疗中的研究进展[J].心血管病学进展,2016,(2):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
ZHANG Qing,LUO Suxin,TANG Jiong.Novel Factor Xa Inhibitors—Edoxaban in Prevention of Stroke in
Patients with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):151.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.014]
[5]胡红玲,综述,罗素新,等.预防非瓣膜性心房颤动性脑卒中的治疗新进展[J].心血管病学进展,2016,(3):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
HU Hongling,LUO Suxin.New Progress in the Treatment for Cerebral Apoplexy of Nonvalvular
Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):250.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.009]
[6]王超,杨国澍,综述,等.关附甲素治疗心房颤动的研究进展[J].心血管病学进展,2016,(3):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
WANG Chao,YANG Guoshu,CAI Lin,et al.Research Progress of the Treatment of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):254.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.010]
[7]徐小东,综述,杨东辉,等.决奈达隆治疗心房颤动的现状及展望[J].心血管病学进展,2016,(4):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
XU Xiaodong,YANG Donghui.Status and Prospect of Dronedarone in Treating Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(10):368.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.011]
[8]张莎,储国俊,吴弘.经导管左心耳封堵术的临床应用进展[J].心血管病学进展,2015,(5):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
ZHANG Sha,CHU Guojun,WU Hong.Clinial Application Advances in Left Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2015,(10):547.[doi:10.3969/j.issn.1004-3934.2015.05.006]
[9]汪俊,杨浩.心房颤动射频消融的术式演变[J].心血管病学进展,2015,(5):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
WANG Jun,YANG Hao.Evolution of Radiofrequency Ablation of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2015,(10):574.[doi:10.3969/j.issn.1004-3934.2015.05.013]
[10]赵璐,苏立.心房颤动与离子通道重构研究进展[J].心血管病学进展,2015,(5):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]
ZHAO Lu,SU Li.Research Progress of Atrial Fibrillation and Ion Channel Remodeling[J].Advances in Cardiovascular Diseases,2015,(10):580.[doi:10.3969/j.issn.1004-3934.2015.05.014]