[1]陈艳华 孙慧.神经免疫心血管界面在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(10):911.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.011]
 CHEN Yanhua,SUN Hui.Research Progress of Neuroimmune Cardiovascular Interfaces in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(10):911.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.011]
点击复制

神经免疫心血管界面在动脉粥样硬化中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年10期
页码:
911
栏目:
综述
出版日期:
2023-10-25

文章信息/Info

Title:
Research Progress of Neuroimmune Cardiovascular Interfaces in Atherosclerosis
作者:
陈艳华1 孙慧 2
(1.山东第一医科大学,山东 济南 250000;2.山东第一医科大学附属中心医院心血管科,山东 济南 250000)
Author(s):
CHEN Yanhua1SUN Hui2
(1.Shandong First Medical University,Jinan 250000,Shandong,China;2.Department of Cardiovascular Medicine,Affiliated Central Hospital of Shandong First Medical University,Jinan 250000,Shandong,China)
关键词:
神经免疫心血管界面动脉粥样硬化急性应激昼夜节律遗传学技术
Keywords:
Neuroimmune cardiovascular interfacesAtherosclerosisAcute stressCircadian rhythmsGenetic technology
DOI:
10.16806/j.cnki.issn.1004-3934.2023.10.011
摘要:
动脉粥样硬化是心血管疾病的主要驱动因素。动脉粥样硬化的标志是动脉内膜层的粥样斑块。斑块可能损害重要器官的血液供应,导致心血管疾病、脑卒中及其他危及生命的事件发生。动脉粥样硬化中神经支配、白细胞和外膜之间的三侧相互作用形成广泛的神经免疫心血管界面。另外,急性应激和昼夜节律也是动脉粥样硬化的一部分驱动因素,遗传学技术提供了神经元信号以特定类型和区域的方式调节神经元的能力。现介绍动脉粥样硬化发展的新机制,强调神经免疫学方法作为预防和治疗血管炎症和斑块形成的工具。
Abstract:
Atherosclerosis is the major driver of cardiovascular disease.The hallmark of atherosclerosis is the atheromatous plaque in the inner intimal layer of arteries.Plaques may impair blood supply to vital organs leading to heart attacks and strokes and other life-threatening events. The tripartite interaction between innervation leukocytes and the adventitia in atherosclerosis forms the extensive neuroimmune cardiovascular interfaces. Additionally acute stress and circadian rhythms are also part of the drivers of atherosclerosis and genetic techniques have provided the ability of neuronal signals to modulate neurons in a specific type and regional manner.This article introduces novel mechanisms of atherosclerosis development emphasizing neuroimmunological approaches as tools to prevent and treat vascular inflammation and plaque formation

参考文献/References:

[1] Mohanta SK,Peng L,Li Y,et al. Neuroimmune cardiovascular interfaces control atherosclerosis[J]. Nature,2022,605(7908):152-159.

[2] Hu D,Mohanta SK,Yin C,et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors[J]. Immunity,2015,42(6):1100-1115.

[3] Mohanta SK,Yin C,Weber C,et al. Neuroimmune cardiovascular interfaces in atherosclerosis[J]. Front Cell Dev Biol,2023,11:1117368.

[4] Sohrabi Y,Reinecke H,Soehnlein O. Trilateral interaction between innervation,leukocyte,and adventitia:a new driver of atherosclerotic plaque formation[J]. Signal Transduct Target Ther,2022,7(1):249.

[5] Steptoe A,Kivim?ki M. Stress and cardiovascular disease[J]. Nat Rev Cardiol,2012,9(6):360-370.

[6] Tam SJ,Watts RJ. Connecting vascular and nervous system development:angiogenesis and the blood-brain barrier[J]. Annu Rev Neurosci,2010,33:379-408.

[7] Dubin AE,Patapoutian A. Nociceptors:the sensors of the pain pathway[J]. J Clin Invest,2010,120(11):3760-3772.

[8] Soehnlein O,Libby P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic[J]. Nat Rev Drug Discov,2021,20(8):589-610.

[9] Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality:is it time to intervene?[J]. Arterioscler Thromb Vasc Biol,2005,25(4):658-670.

[10] Hidalgo A,Chang J,Jang JE,et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury[J]. Nat Med,2009,15(4):384-391.

[11] Muller WA. Transendothelial migration:unifying principles from the endothelial perspective[J]. Immunol Rev,2016,273(1):61-75.

[12] Vestweber D. How leukocytes cross the vascular endothelium[J]. Nat Rev Immunol,2015,15(11):692-704.

[13] Akhavanpoor M,Wangler S,Gleissner CA,et al. Adventitial inflammation and its interaction with intimal atherosclerotic lesions[J].Front Physiol,2014,5:296.

[14] Brunet I,Gordon E,Han J,et al. Netrin-1 controls sympathetic arterial innervation[J]. J Clin Invest,2014,124(7):3230-3240.

[15] Yin C,Mohanta SK,Srikakulapu P,et al. Artery tertiary lymphoid organs:powerhouses of atherosclerosis immunity[J]. Front Immunol,2016,7:387.

[16] Ridker PM,Everett BM,Thuren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.

[17] Libby P. Inflammation during the life cycle of the atherosclerotic plaque[J]. Cardiovasc Res,2021,117(13):2525-2536.

[18] Gr?bner R,L?tzer K,D?pping S,et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice[J]. J Exp Med,2009,206(1):233-248.

[19] Chu C,Artis D,Chiu IM. Neuro-immune interactions in the tissues[J]. Immunity,2020,52(3):464-474.

[20] Libby P,Ridker PM,Hansson GK. Progress and challenges in translating the biology of atherosclerosis[J]. Nature,2011,473(7347):317-325.

[21] Hinterdobler J,Schott S,Jin H,et al. Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis[J]. Eur Heart J ,2021,42(39):4077-4088.

[22] Juan DA,Ince LM,Pick R,et al. Artery-associated sympathetic innervation drives rhythmic vascular inflammation of arteries and veins[J]. Circulation,2019,140(13):1100-1114.

[23] Scheiermann C,Gibbs J,Ince L,et al. Clocking in to immunity[J]. Nat Rev Immunol,2018,18(7):423-437.

[24] Gibbs J,Ince L,Matthews L,et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action[J]. Nat Med,2014,20(8):919-926.

[25] Curtis AM,Bellet MM,Sassone-Corsi P,et al. Circadian clock proteins and immunity[J]. Immunity,2014,40(2):178-186.

[26] Gibbs JE,Blaikley J,Beesley S,et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines[J]. Proc Natl Acad Sci U S A,2012,109(2):582-587.

[27] Vlasov K,van Dort CJ,Solt K. Optogenetics and chemogenetics[M]. Methods Enzymol,2018,603:181-196.

[28] Poller WC,Downey J,Mooslechner AA,et al. Brain motor and fear circuits regulate leukocytes during acute stress[J]. Nature,2022,607(7919):578-584.

[29] Dutta P,Courties G,Wei Y,et al. Myocardial infarction accelerates atherosclerosis[J]. Nature,2012,487(7407):325-329.

[30] Steinman L. Lessons learned at the intersection of immunology and neuroscience[J].J Clin Invest,2012,122(4):1146-1148.

[31] Vasamsetti SB,Florentin J,Coppin E,et al. Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation[J]. Immunity,2018,49(1):93-106.e7.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(10):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(10):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(10):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(10):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(10):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(10):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(10):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(10):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-11-15