参考文献/References:
[1] 《中国心血管健康与疾病报告2021》编写组,王增武,胡盛寿. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国心血管杂志,2022,27(4):305-318.
[2] Nilius B,Szallasi A. Transient receptor potential channels as drug targets:from the science of basic research to the art of medicine[J]. Pharmacol Rev,2014,66(3):676-814.
[3] Moran MM. TRP channels as potential drug targets[J]. Annu Rev Pharmacol Toxicol,2018,58:309-330.
[4] Montell C,Birnbaumer L,Flockerzi V,et al. A unified nomenclature for the superfamily of TRP cation channels[J]. Mol Cell,2002,9(2):229-231.
[5] Strotmann R,Harteneck C,Nunnenmacher K,et al. OTRPC4,a nonselective cation channel that confers sensitivity to extracellular osmolarity[J]. Nat Cell Biol,2000,2(10):695-702.
[6] Wissenbach U,B?dding M,Freichel M,et al. Trp12,a novel Trp related protein from kidney[J]. FEBS Lett,2000,485(2-3):127-134.
[7] Shenton FC,Pyner S. Expression of transient receptor potential channels TRPC1 and TRPV4 in venoatrial endocardium of the rat heart[J]. Neuroscience,2014,267:195-204.
[8] Jia X,Yu T,Xiao C,et al. Expression of transient receptor potential vanilloid genes and proteins in diabetic rat heart[J]. Mol Biol Rep,2021,48(2):1217-1223.
[9] Strotmann R,Schultz G,Plant TD. Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site[J]. J Biol Chem,2003,278(29):26541-26549.
[10] Nilius B,Prenen J,Wissenbach U,et al. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells[J]. Pflugers Arch,2001,443(2):227-233.
[11] Deng Z,Paknejad N,Maksaev G,et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms[J].Nat Struct Mol Biol,2018,25(3):252-260.
[12] Stewart AP,Smith GD,Sandford RN,et al. Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer[J]. Biophys J,2010,99(3):790-797.
[13] Greenberg HZE,Carlton-Carew SRE,Khan DM,et al. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries[J]. Vascul Pharmacol,2017,96-98:53-62.
[14] Zhu Y,Xian X,Wang Z,et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80.
[15] Murphy TV,Sandow SL. Agonist-evoked endothelial Ca2+ signalling microdomains[J]. Curr Opin Pharmacol,2019,45:8-15.
[16] McFarland SJ,Weber DS,Choi CS,et al. Ablation of endothelial TRPV4 channels alters the dynamic Ca2+ signaling profile in mouse carotid arteries[J]. Int J Mol Sci,2020,21(6):2179.
[17] Song X,Sun Z,Chen G,et al. Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway[J]. Acta Biomater,2019,100:52-60.
[18] Gupta N,Goswami R,Alharbi MO,et al. TRPV4 is a regulator in P. gingivalis lipopolysaccharide-induced exacerbation of macrophage foam cell formation[J]. Physiol Rep,2019,7(7):e14069.
[19] Goswami R,Merth M,Sharma S,et al. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation[J]. Free Radic Biol Med,2017,110:142-150.
[20] Alharbi MO,Dutta B,Goswami R,et al. Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes[J]. Sci Rep,2021,11(1):8173.
[21] Gruber EJ,Aygun AY,Leifer CA. Macrophage uptake of oxidized and acetylated low-density lipoproteins and generation of reactive oxygen species are regulated by linear stiffness of the growth surface[J]. PLoS One,2021,16(12):e0260756.
[22] Xu S,Liu B,Yin M,et al. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis[J]. Oncotarget,2016,7(25):37622-37635.
[23] Jawien J. The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis[J]. Curr Pharm Biotechnol,2012,13(13):2435-2439.
[24] Earley S,Brayden JE. Transient receptor potential channels in the vasculature[J]. Physiol Rev,2015,95(2):645-690.
[25] Vanhoutte PM,Shimokawa H,Feletou M,et al. Endothelial dysfunction and vascular disease—A 30th anniversary update [J]. Acta Physiol (Oxf),2017,219(1):22-96.
[26] Goto K,Ohtsubo T,Kitazono T. Endothelium-dependent hyperpolarization (EDH) in hypertension: the role of endothelial ion channels[J]. Int J Mol Sci,2018,19(1):315.
[27] Boudaka A,Al-Suleimani M,Al-Lawati I,et al. Downregulation of endothelial transient receptor potential vanilloid type 4 channel underlines impaired endothelial nitric oxide-mediated relaxation in the mesenteric arteries of hypertensive rats[J]. Physiol Res,2019,68(2):219-231.
[28] Seki T,Goto K,Kiyohara K,et al. Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca2+-activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension[J]. Hypertension,2017,69(1):143-153.
[29] Diaz-Otero JM,Yen TC,Fisher C,et al. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension[J]. Am J Physiol Heart Circ Physiol,2018,315(5):H1304-H1315.
[30] Chambers L,Dorrance AM. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation[J]. Curr Top Membr,2020,85:151-185.
[31] Zhang P,Sun C,Li H,et al. TRPV4 (transient receptor potential vanilloid 4) mediates endothelium-dependent contractions in the aortas of hypertensive mice[J]. Hypertension,2018,71(1):134-142.
[32] Dong Q,Li J,Wu QF,et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice[J]. Sci Rep,2017,7:42678.
[33] Wu QF,Qian C,Zhao N,et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes[J]. Cell Death Dis,2017,8(5):e2828.
[34] Wu Q,Lu K,Zhao Z,et al. Blockade of transient receptor potential vanilloid 4 enhances antioxidation after myocardial ischemia/reperfusion[J]. Oxid Med Cell Longev,2019,2019:7283683.
[35] Zhang S,Lu K,Yang S,et al. Activation of transient receptor potential vanilloid 4 exacerbates myocardial ischemia-reperfusion injury via JNK-CaMKII phosphorylation pathway in isolated mice hearts[J]. Cell Calcium,2021,100:102483.
[36] Peana D,Polo-Parada L,Domeier TL. Arrhythmogenesis in the aged heart following ischaemia-reperfusion: role of transient receptor potential vanilloid 4[J]. Cardiovasc Res,2022,118(4):1126-1137.
[37] Liao J,Wu Q,Qian C,et al. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats[J]. JCI Insight,2020,5(23):e137528.
[38] Chaigne S,Cardouat G,Louradour J,et al. Transient receptor potential vanilloid 4 channel participates in mouse ventricular electrical activity[J]. Am J Physiol Heart Circ Physiol,2021,320(3):H1156-H1169.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(9):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(9):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(9):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]