[1]赵海燕 关秀茹.NLRP3炎症小体介导氧化三甲胺加速动脉粥样硬化的新进展[J].心血管病学进展,2023,(11):1028.[doi:10. 16806/j. cnki. issn. 1004-3934. 2023.11. 000]
 ZHAO Haiyan,GUAN Xiuru.NLRP3 Inflammasome in Mediating Trimethylamine?Oxide Accelerates Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(11):1028.[doi:10. 16806/j. cnki. issn. 1004-3934. 2023.11. 000]
点击复制

NLRP3炎症小体介导氧化三甲胺加速动脉粥样硬化的新进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1028
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
NLRP3 Inflammasome in Mediating Trimethylamine?Oxide Accelerates Atherosclerosis
作者:
赵海燕 关秀茹
(哈尔滨医科大学附属第一医院检验科,黑龙江 哈尔滨 150001)
Author(s):
ZHAO Haiyan GUAN Xiuru
(Department of Laboratory Diagnostics,The first Affiliated Hospital of Harbin Medical University,Harbin 15001,Heilongjiang,China)
关键词:
动脉粥样硬化NOD样受体热蛋白结构域相关蛋白3炎症小体氧化三甲胺斑块破裂
Keywords:
Atherosclerosis NOD-like receptor heat protein domain-associated protein 3 inflammasome Trimethylamine?oxide Plaque rupture
DOI:
10. 16806/j. cnki. issn. 1004-3934. 2023.11. 000
摘要:
动脉粥样硬化是一种伴有脂质代谢紊乱的慢性炎症反应。NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎症小体作为一种多蛋白组成的炎症复合物,与细胞活性、血管炎症、斑块进展密切相关。氧化三甲胺作为肠道菌群主要代谢产物,能启动NLRP3炎症小体的激活,参与粥样硬化斑块形成和斑块破裂的病理学过程。现就氧化三甲胺与NLRP3 炎症小体在动脉粥样硬化中的作用进行综述,旨在为动脉粥样硬化的机制研究和临床防治提供新视角。
Abstract:
Atherosclerosis is a chronic inflammatory response with lipid metabolism disorder. NOD-like receptor heat protein domain-associated protein 3 (NLRP3) inflammasome as a multi-protein inflammatory complex is closely related to cell activity ,vascular inflammatory,and the progression of plaque. Trimethylamine oxide, as a major metabolite of intestinal flora ,can initiate the activation of NLRP3 inflammasome and participate in the pathophysiological mechanism of atherosclerotic plaque formation and plaque rupture. The paper reviews the role of NLRP3 inflammasome and trimethylamine oxide in atherosclerosis to provide a new perspective for the mechanism research and clinical prevention and treatment of atherosclerosis

参考文献/References:

[1] 邢团结. 血清氧化三甲胺水平与冠心病及冠脉狭窄程度的相关性分析[D]. 蚌埠:蚌埠医学院2022.
[2] 汤紫薇,谷依檬,薛梅.基于免疫炎症学说中医药防治动脉粥样硬化研究[J]. 中国中医基础医学杂志,2022,28(7):1192-1198.
[3] Ketelhuth DF,B?ck M. The role of matrix metalloproteinases in atherothrombosis[J]. Curr Atheroscler Rep,2011,13(2):162-169.
[4] Cainzos-Achirica M,Enjuanes C,Greenland P,et al. The prognostic value of interleukin 6 in multiple chronic diseases and all-cause death :The Multi-Ethnic Study of Atherosclerosis (MESA)[J]. Atherosclerosis,2018,278:217-225.
[5] Hoffman HM,Mueller JL,Broide DH,et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome[J]. Nat Genet,2001,29(3):301-305.
[6]Martinon F,Burns K,Tschopp J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-β[J]. Mol Cell,2002,10(2):417-426.
[7] Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):477-489.
[8] Doitsh G,Galloway NL,Geng X,et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature,2014,505(7484):509-514.
[9] Duewell P,Kono H,Rayner KJ,et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature,2010,464(7293):1357-1361.
[10]Paramel Varghese G,Folkersen L,Strawbridge RJ,et al. NLRP3 inflammasome expression and activation in human atherosclerosis[J]. J Am Heart Assoc,2016,5(5):e003031.
[11] Shi X,Xie WL,Kong WW,et al. Expression of the NLRP3 inflammasome in carotid atherosclerosis[J]. J Stroke Cerebrovasc Dis,2015,24(11):2455-2466.
[12] Zheng F,Xing S,Gong Z,et al. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice[J]. Mediators Inflamm,2014,2014:507208.
[13] van der Heijden T,Kritikou E,Venema W,et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report[J]. Arterioscler Thromb Vasc Biol,2017,37(8):1457-1461.
[14] Mitchell JP,Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol,2018,335:41-84.
[15] Zhang M,Xue Y,Chen H,et al. Resveratrol inhibits MMP3 and MMP9 expression and secretion by suppressing TLR4/NF-κB/STAT3 activation in ox-LDL-treated HUVECs[J]. Oxid Med Cell Longev,2019,2019:9013169.
[16] Li J,Liu J,Yu Y,et al. NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages[J]. Mol Biol Rep,2022,49(7):6161-6171.
[17] You Z,Liu SP,Du J,et al. Advancements in MAPK signaling pathways and MAPK-targeted therapies for ameloblastoma:A review[J]. J Oral Pathol Med,2019,48(3):201-205.
[18] Rajam?ki K,M?yr?np?? MI,Risco A,et al. p38δ MAPK:a novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis[J]. Arterioscler Thromb Vasc Biol,2016,36(9):1937-1946.
[19] Huang D,Gao W,Lu H,et al. Oxidized low-density lipoprotein stimulates dendritic cells maturation via LOX-1-mediated MAPK/NF-κB pathway[J]. Braz J Med Biol Res,2021,54(9):e11062.
[20] Li Q,Yang XT,Wei W,et al. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation[J]. J Cell Physiol,2022,237(8):3369-3380.
[21] Tam AB,Mercado EL,Hoffmann A,et al. ER stress activates NF-κB by integrating functions of basal IKK activity,IRE1 and PERK[J]. PLoS One,2012,7(10):e45078.
[22] Gong Y,Li Q,Ma Z,et al. Downregulation of activating transcription factor 4 attenuates lysophosphatidycholine-induced inflammation via the NF-κB pathway[J]. Eur J Pharmacol,2021,911:174457.
[23] Guo X,Wang L,Xia X,et al. Effects of atorvastatin and/or probucol on recovery of atherosclerosis in high-fat-diet-fed apolipoprotein E-deficient mice[J]. Biomed Pharmacother,2019,109:1445-1453.
[24] Jung TW,Park HS,Jeong JH,et al. Salsalate ameliorates the atherosclerotic response through HO-1- and SIRT1-mediated suppression of ER stress and inflammation[J]. Inflamm Res,2019,68(8):655-663.
[25] Cho CE,Taesuwan S,Malysheva OV,et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition:A randomized controlled trial[J]. Mol Nutr Food Res,2017,61(1):10.
[26] Din AU,Hassan A,Zhu Y,et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol,2019,103(23-24):9217-9228.
[27] Yu H,Chai X,Geng WC,et al. Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair[J]. Biosens Bioelectron,2021,192:113488.
[28] Wang Z,Roberts AB,Buffa JA,et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell,2015,163(7):1585-1595.
[29] Costa Franco MMS,Marim FM,Alves-Silva J,et al. AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion,pyroptosis and resistance to bacterial infection in mice[J]. Microbes Infect,2019,21(2):85-93.
[30] Meunier E,Wallet P,Dreier RF,et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida[J]. Nat Immunol,2015,16(5):476-484.
[31] 白雪琦,靳春荣,肖珊. 血浆氧化三甲胺与冠心病预后关系的剂量-反应Meta分析[J]. 中西医结合心脑血管病杂志,2021,19(9):1524-1529.
[32] Heianza Y,Ma W,Manson JE,et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death:a systematic review and meta-analysis of prospective studies[J]. J Am Heart Assoc,2017,6(7):e004947.
[33] Liu X,Xie Z,Sun M,et al. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography[J]. Int J Cardiol,2018,265:18-23.
[34] Boini KM,Hussain T,Li PL,et al. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem,2017,44(1):152-162.
[35] Chen ML,Zhu XH,Ran L,et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. J Am Heart Assoc,2017,6(9):e006347.
[36] Chen CY,Leu HB,Wang SC,et al. Inhibition of trimethylamine N-oxide attenuates neointimal formation through reduction of inflammasome and oxidative stress in a mouse model of carotid artery ligation[J]. Antioxid Redox Signal,2023,38(1-3):215-233.
[37] Zhang X,Li Y,Yang P,et al. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain,leucine-rich-containing family,pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals[J]. Arterioscler Thromb Vasc Biol,2020,40(3):751-765.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(11):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(11):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(11):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(11):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-12-13