参考文献/References:
[1] 邢团结. 血清氧化三甲胺水平与冠心病及冠脉狭窄程度的相关性分析[D]. 蚌埠:蚌埠医学院2022.
[2] 汤紫薇,谷依檬,薛梅.基于免疫炎症学说中医药防治动脉粥样硬化研究[J]. 中国中医基础医学杂志,2022,28(7):1192-1198.
[3] Ketelhuth DF,B?ck M. The role of matrix metalloproteinases in atherothrombosis[J]. Curr Atheroscler Rep,2011,13(2):162-169.
[4] Cainzos-Achirica M,Enjuanes C,Greenland P,et al. The prognostic value of interleukin 6 in multiple chronic diseases and all-cause death :The Multi-Ethnic Study of Atherosclerosis (MESA)[J]. Atherosclerosis,2018,278:217-225.
[5] Hoffman HM,Mueller JL,Broide DH,et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome[J]. Nat Genet,2001,29(3):301-305.
[6]Martinon F,Burns K,Tschopp J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-β[J]. Mol Cell,2002,10(2):417-426.
[7] Swanson KV,Deng M,Ting JP. The NLRP3 inflammasome:molecular activation and regulation to therapeutics[J]. Nat Rev Immunol,2019,19(8):477-489.
[8] Doitsh G,Galloway NL,Geng X,et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature,2014,505(7484):509-514.
[9] Duewell P,Kono H,Rayner KJ,et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature,2010,464(7293):1357-1361.
[10]Paramel Varghese G,Folkersen L,Strawbridge RJ,et al. NLRP3 inflammasome expression and activation in human atherosclerosis[J]. J Am Heart Assoc,2016,5(5):e003031.
[11] Shi X,Xie WL,Kong WW,et al. Expression of the NLRP3 inflammasome in carotid atherosclerosis[J]. J Stroke Cerebrovasc Dis,2015,24(11):2455-2466.
[12] Zheng F,Xing S,Gong Z,et al. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice[J]. Mediators Inflamm,2014,2014:507208.
[13] van der Heijden T,Kritikou E,Venema W,et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report[J]. Arterioscler Thromb Vasc Biol,2017,37(8):1457-1461.
[14] Mitchell JP,Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol,2018,335:41-84.
[15] Zhang M,Xue Y,Chen H,et al. Resveratrol inhibits MMP3 and MMP9 expression and secretion by suppressing TLR4/NF-κB/STAT3 activation in ox-LDL-treated HUVECs[J]. Oxid Med Cell Longev,2019,2019:9013169.
[16] Li J,Liu J,Yu Y,et al. NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages[J]. Mol Biol Rep,2022,49(7):6161-6171.
[17] You Z,Liu SP,Du J,et al. Advancements in MAPK signaling pathways and MAPK-targeted therapies for ameloblastoma:A review[J]. J Oral Pathol Med,2019,48(3):201-205.
[18] Rajam?ki K,M?yr?np?? MI,Risco A,et al. p38δ MAPK:a novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis[J]. Arterioscler Thromb Vasc Biol,2016,36(9):1937-1946.
[19] Huang D,Gao W,Lu H,et al. Oxidized low-density lipoprotein stimulates dendritic cells maturation via LOX-1-mediated MAPK/NF-κB pathway[J]. Braz J Med Biol Res,2021,54(9):e11062.
[20] Li Q,Yang XT,Wei W,et al. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation[J]. J Cell Physiol,2022,237(8):3369-3380.
[21] Tam AB,Mercado EL,Hoffmann A,et al. ER stress activates NF-κB by integrating functions of basal IKK activity,IRE1 and PERK[J]. PLoS One,2012,7(10):e45078.
[22] Gong Y,Li Q,Ma Z,et al. Downregulation of activating transcription factor 4 attenuates lysophosphatidycholine-induced inflammation via the NF-κB pathway[J]. Eur J Pharmacol,2021,911:174457.
[23] Guo X,Wang L,Xia X,et al. Effects of atorvastatin and/or probucol on recovery of atherosclerosis in high-fat-diet-fed apolipoprotein E-deficient mice[J]. Biomed Pharmacother,2019,109:1445-1453.
[24] Jung TW,Park HS,Jeong JH,et al. Salsalate ameliorates the atherosclerotic response through HO-1- and SIRT1-mediated suppression of ER stress and inflammation[J]. Inflamm Res,2019,68(8):655-663.
[25] Cho CE,Taesuwan S,Malysheva OV,et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition:A randomized controlled trial[J]. Mol Nutr Food Res,2017,61(1):10.
[26] Din AU,Hassan A,Zhu Y,et al. Amelioration of TMAO through probiotics and its potential role in atherosclerosis[J]. Appl Microbiol Biotechnol,2019,103(23-24):9217-9228.
[27] Yu H,Chai X,Geng WC,et al. Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair[J]. Biosens Bioelectron,2021,192:113488.
[28] Wang Z,Roberts AB,Buffa JA,et al. Non-lethal Inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell,2015,163(7):1585-1595.
[29] Costa Franco MMS,Marim FM,Alves-Silva J,et al. AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion,pyroptosis and resistance to bacterial infection in mice[J]. Microbes Infect,2019,21(2):85-93.
[30] Meunier E,Wallet P,Dreier RF,et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida[J]. Nat Immunol,2015,16(5):476-484.
[31] 白雪琦,靳春荣,肖珊. 血浆氧化三甲胺与冠心病预后关系的剂量-反应Meta分析[J]. 中西医结合心脑血管病杂志,2021,19(9):1524-1529.
[32] Heianza Y,Ma W,Manson JE,et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death:a systematic review and meta-analysis of prospective studies[J]. J Am Heart Assoc,2017,6(7):e004947.
[33] Liu X,Xie Z,Sun M,et al. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography[J]. Int J Cardiol,2018,265:18-23.
[34] Boini KM,Hussain T,Li PL,et al. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem,2017,44(1):152-162.
[35] Chen ML,Zhu XH,Ran L,et al. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J]. J Am Heart Assoc,2017,6(9):e006347.
[36] Chen CY,Leu HB,Wang SC,et al. Inhibition of trimethylamine N-oxide attenuates neointimal formation through reduction of inflammasome and oxidative stress in a mouse model of carotid artery ligation[J]. Antioxid Redox Signal,2023,38(1-3):215-233.
[37] Zhang X,Li Y,Yang P,et al. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain,leucine-rich-containing family,pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals[J]. Arterioscler Thromb Vasc Biol,2020,40(3):751-765.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(11):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(11):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(11):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(11):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(11):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(11):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]