参考文献/References:
[1 ]Roth GA,Mensah GA,Johnson CO,et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2 ]Zhu Y, Xian X, Wang Z,et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80.
[3 ]Ridker PM,Everett BM,Thuren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.
[4 ]Abbate A,Trankle CR,Buckley LF,et al. Interleukin-1 Blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction[J]. J Am Heart Assoc,2020,9(5):e14941.
[5 ]Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.
[6 ]Nidorf SM,Eikelboom JW,Budgeon CA,et al. Low-dose colchicine for secondary prevention of cardiovascular disease[J]. J Am Coll Cardiol,2013,61(4):404-410.
[7 ]Fiolet ATL,Cornel JH,Thompson PL. Colchicine in patients with chronic coronary disease. Reply[J]. N Engl J Med,2021,384(8):778-779.
[8 ]Tardif JC,Kouz S,Waters DD,et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med,2019,381(26):2497-2505.
[9 ]Vaidya K,Arnott C,Martínez GJ,et al. Colchicine therapy and plaque stabilization in patients with acute?coronary syndrome:a CT coronary angiography study[J]. JACC Cardiovasc Imaging,2018,11(2 Pt 2):305-316.
[10]Mantaka A,Galanakis N,Tsetis D,et al. Abdominal aortic calcification in patients with inflammatory bowel disease:does anti-tumor necrosis factor α use protect from chronic inflammation-induced atherosclerosis?[J]. Intest Res,2022,20(4):495-505.[11]Ridker PM,Devalaraja M,Baeres FMM,et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE):a double-blind,randomised,placebo-controlled,phase 2 trial[J]. Lancet,2021,397(10289):2060-2069.
[12]Hoffman E,Rahat MA,Feld J,et al. Effects of tocilizumab,an anti-interleukin-6 receptor antibody,on serum lipid and adipokine levels in patients with rheumatoid arthritis[J]. Int J Mol Sci,2019,20(18):4633.
[13]Engelbertsen D,Depuydt MAC,Verwilligen RAF,et al. IL-23R deficiency does not impact atherosclerotic plaque development in mice[J]. J Am Heart Assoc,2018,7(8):e008257.
[14]Wang J,Zhao P,Gao Y,et al. The effects of Anti-IL-23p19 therapy on atherosclerosis development in ApoE(-/-) Mice[J]. J Interferon Cytokine Res ,2019,39(9):564-571.
[15]Wang J,He L,Li W,et al. A Role of IL-17 in rheumatoid arthritis patients complicated with atherosclerosis[J]. Front Pharmacol,2022,13:828933.
[16]Piros ?A,Szabó ?,Rencz F,et al. Impact of interleukin-17 inhibitor therapy on arterial intima-media thickness among severe psoriatic patients[J]. Life (Basel),2021,11(9):919.
[17]Marovt M,Marko PB,Pirnat M,et al. Effect of biologics targeting interleukin-23/-17 axis on subclinical atherosclerosis:results of a pilot study[J]. Clin Exp Dermatol,2020,45(5):560-564.
[18]Chiang N,Serhan CN. Specialized pro-resolving mediator network:an update on production and actions[J]. Essays Biochem,2020,64(3):443-462.
[19]Salazar J,Pirela D,Nava M,et al. Specialized proresolving lipid mediators:a potential therapeutic target for atherosclerosis[J]. Int J Mol Sci,2022,23(6):3133.
[20]de Jong RJ,Paulin N,Lemnitzer P,et al. Protective aptitude of annexin A1 in arterial neointima formation in atherosclerosis-prone mice—Brief report[J]. Arterioscler Thromb Vasc Biol,2017,37(2):312-315.
[21]Jelinic M,Kahlberg N,Leo CH,et al. Annexin-A1 deficiency exacerbates pathological remodelling of the mesenteric vasculature in insulin-resistant,but not insulin-deficient,mice[J]. Br J Pharmacol,2020,177(7):1677-1691.
[22]Uyy E,Suica VI,Boteanu RM,et al. Regulated cell death joins in atherosclerotic plaque silent progression[J]. Sci Rep,2022,12(1):2814.
[23]Xu S,Zhang J,Liu J,et al. The role of interleukin-10 family members in cardiovascular diseases[J]. Int Immunopharmacol,2021,94:107475.
[24]Shi H,Guo J,Yu Q,et al. CRISPR/Cas9 based blockade of IL-10 signaling impairs lipid and tissue homeostasis to accelerate atherosclerosis[J]. Front Immunol,2022,13:999470.
[25]Distasio N,Dierick F,Ebrahimian T,et al. Design and development of Branched Poly(?-aminoester) nanoparticles for interleukin-10 gene delivery in a mouse model of atherosclerosis[J]. Acta Biomater,2022,143:356-371.
[26]Hasturk H,Abdallah R,Kantarci A,et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis[J]. Arterioscler Thromb Vasc Biol,2015,35(5):1123-1133.
[27]Petri MH,Laguna-Fernandez A,Arnardottir H,et al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E(-/-) mice[J]. Br J Pharmacol,2017,174(22):4043-4054.
[28]Viola JR,Lemnitzer P,Jansen Y,et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice[J]. Circ Res,2016,119(9):1030-1038.
[29]Makino Y,Miyahara T,Nitta J,et al. Proresolving lipid mediators resolvin D1 and protectin D1 isomer attenuate neointimal hyperplasia in the rat carotid artery balloon injury model[J]. J Surg Res,2019,233:104-110.
[30]Miyahara T,Runge S,Chatterjee A,et al. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury[J]. FASEB J,2013,27(6):2220-2232.
[31]Bardin M,Pawelzik SC,Lagrange J,et al. The resolvin D2-GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice[J]. Biochem Pharmacol,2022,201:115075.
[32]Arnardottir H,Thul S,Pawelzik SC,et al. The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection[J]. J Clin Invest,2021,131(24):e142883.
[33]Dhawan UK,Singhal A,Subramanian M. Dead cell and debris clearance in the atherosclerotic plaque:mechanisms and therapeutic opportunities to promote inflammation resolution[J]. Pharmacol Res,2021,170:105699.
[34]Doran AC,Ozcan L,Cai B,et al. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis[J]. J Clin Invest,2017,127(11):4075-4089.
[35]Manickam V,Dhawan UK,Singh D,et al. Pomegranate peel extract decreases plaque necrosis and advanced atherosclerosis progression in Apoe (-/-) mice[J]. Front Pharmacol,2022,13:888300.
[36]Tao W,Yurdagul A Jr,Kong N,et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice[J]. Sci Transl Med,2020,12(553):eaay1063.
[37]Jarr KU,Nakamoto R,Doan BH,et al. Effect of CD47 blockade on vascular inflammation[J]. N Engl J Med,2021,384(4):382-383.
[38]Kojima Y,Volkmer JP,McKenna K,et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature,2016,536(7614):86-90.
[39]Chen L,Zhou Z,Hu C,et al. Platelet membrane-coated nanocarriers targeting plaques to deliver Anti-CD47 antibody for atherosclerotic therapy[J]. Research (Wash D C),2022,2022:9845459.
[40]Jarr KU,Ye J,Kojima Y,et al. The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis[J]. Nat Cardiovasc Res,2022,1(3):253-262.
[41]Morioka S,Perry JSA,Raymond MH,et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release[J]. Nature,2018,563(7733):714-718.
[42]Merlin J,Ivanov S,Dumont A,et al. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation[J]. Nat Metab,2021,3(10):1313-1326.
[43]McCubbrey AL,McManus SA,McClendon JD,et al. Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells[J]. Cell Rep,2022,38(2):110222.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(6):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(6):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
[3]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[4]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(6):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(6):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(6):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(6):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[12]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[13]张颖怡 刘金波 刘欢 赵娜 赵红薇 王宏宇.全身动脉粥样硬化斑块与脑梗死的关系:北京血管病变评价研究结果[J].心血管病学进展,2021,(3):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
ZHANG YingyiLIU J inboLIU HuanZHAO NaZHAO HongweiWANG Hongyu.The Relationship Between Systematic Atherosclerotic Plaques and Cerebral Infarction:Results from Beijing Vascular Disease Evaluation Study[J].Advances in Cardiovascular Diseases,2021,(6):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
[14]李佳珊 关秀茹.ABCA1:调控胆固醇逆向转运与炎症激活之间关系的研究新进展[J].心血管病学进展,2021,(7):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
LI Jiashan,GUAN Xiuru.ABCA1: New Progress in Regulating the Relationship Between Cholesterol Reverse Transport and Inflammation Activation[J].Advances in Cardiovascular Diseases,2021,(6):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
[15]原达 朱国斌.血小板P选择素及CD40/CD40L在动脉粥样硬化中的研究进展[J].心血管病学进展,2021,(10):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
YUAN Da,ZHU Guobin.Research Progress of Platelet-Related P-Selectin and?D40L Pro-Inflammatory Effects in Atherosclerosis[J].Advances in Cardiovascular Diseases,2021,(6):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
[16]肖明瑛 苏冠华.PCSK9抑制剂多效性研究进展[J].心血管病学进展,2022,(2):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]
XIAO MingyingSU Guanhua.Pleiotropic Effects of PCSK9 Inhibitors[J].Advances in Cardiovascular Diseases,2022,(6):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]