[1]王朝阳 赵丽娜 田师鹏 陈淑霞 谷剑.炎症治疗在动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
 WANG Zhaoyang,ZHAO Lina,TIAN Shipeng,et al.Advances in the Treatment of Inflammation in Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(6):519.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.009]
点击复制

炎症治疗在动脉粥样硬化中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年6期
页码:
519
栏目:
综述
出版日期:
2023-06-25

文章信息/Info

Title:
Advances in the Treatment of Inflammation in Atherosclerosis
作者:
王朝阳1 赵丽娜1 田师鹏 2 陈淑霞2 谷剑 2
(1.河北石家庄河北医科大学研究生学院,河北 石家庄 050017;2.河北石家庄河北省人民医院心内科,河北 石家庄 050017)
Author(s):
WANG Zhaoyang1ZHAO Lina1TIAN Shipeng2CHEN Shuxia2GU Jian2
(1.Graduate School of Hebei Medical University,Hebei 050017Shijiazhuang,China;2.Department of Heart Center,Hebei General Hospital,Hebei 050051Shijiazhuang,China)
关键词:
动脉粥样硬化炎症炎症因子促消退介质血管周围脂肪组织巨噬细胞
Keywords:
AtherosclerosisInflammationInflammatory factorsSpecialized proresolving mediatorsPerivascular adipose tissueMacrophages
DOI:
10.16806/j.cnki.issn.1004-3934.2023.06.009
摘要:
动脉粥样硬化(AS)是心脑血管疾病的主要病理基础,它通常被认为是由脂代谢失衡引起的一种慢性疾病。近年来,血管壁炎症的激活及调控机制的失衡已被证实在AS的发生和进展中起到关键作用。到目前为止,大多数药物治疗的目的是控制血脂等传统危险因素,但AS继发的临床事件仍不断发生,这在很大程度上反映了当代治疗方法无法充分控制残余的炎症反应。因此,以炎症作为延缓AS进展的治疗靶点得到越来越多的认可。
Abstract:
Atherosclerosis (AS) is the main pathological basis of cardiovascular diseases,and it is usually considered as a chronic disease caused by imbalance of lipid metabolism.?In recent years,the activation of inflammation in the vascular wall and the imbalance of regulatory mechanisms have been shown to play a key role in the development and progression of AS. To date,most pharmacological treatments have been aimed at controlling traditional risk factors such as lipids,but clinical events secondary to AS continue to occur,largely reflecting the inability of contemporary therapies to adequately control residual inflammatory responses. Therefore,the use of inflammation as a therapeutic target to slow the progression of AS is gaining increasing recognition

参考文献/References:

[1 ]Roth GA,Mensah GA,Johnson CO,et al. Global burden of cardiovascular diseases and risk factors,1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol,2020,76(25):2982-3021.
[2 ]Zhu Y, Xian X, Wang Z,et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80.
[3 ]Ridker PM,Everett BM,Thuren T,et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med,2017,377(12):1119-1131.
[4 ]Abbate A,Trankle CR,Buckley LF,et al. Interleukin-1 Blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction[J]. J Am Heart Assoc,2020,9(5):e14941.
[5 ]Ridker PM,Everett BM,Pradhan A,et al. Low-dose methotrexate for the prevention of atherosclerotic events[J]. N Engl J Med,2019,380(8):752-762.
[6 ]Nidorf SM,Eikelboom JW,Budgeon CA,et al. Low-dose colchicine for secondary prevention of cardiovascular disease[J]. J Am Coll Cardiol,2013,61(4):404-410.
[7 ]Fiolet ATL,Cornel JH,Thompson PL. Colchicine in patients with chronic coronary disease. Reply[J]. N Engl J Med,2021,384(8):778-779.
[8 ]Tardif JC,Kouz S,Waters DD,et al. Efficacy and safety of low-dose colchicine after myocardial infarction[J]. N Engl J Med,2019,381(26):2497-2505.
[9 ]Vaidya K,Arnott C,Martínez GJ,et al. Colchicine therapy and plaque stabilization in patients with acute?coronary syndrome:a CT coronary angiography study[J]. JACC Cardiovasc Imaging,2018,11(2 Pt 2):305-316.
[10]Mantaka A,Galanakis N,Tsetis D,et al. Abdominal aortic calcification in patients with inflammatory bowel disease:does anti-tumor necrosis factor α use protect from chronic inflammation-induced atherosclerosis?[J]. Intest Res,2022,20(4):495-505.

[11]Ridker PM,Devalaraja M,Baeres FMM,et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE):a double-blind,randomised,placebo-controlled,phase 2 trial[J]. Lancet,2021,397(10289):2060-2069.
[12]Hoffman E,Rahat MA,Feld J,et al. Effects of tocilizumab,an anti-interleukin-6 receptor antibody,on serum lipid and adipokine levels in patients with rheumatoid arthritis[J]. Int J Mol Sci,2019,20(18):4633.
[13]Engelbertsen D,Depuydt MAC,Verwilligen RAF,et al. IL-23R deficiency does not impact atherosclerotic plaque development in mice[J]. J Am Heart Assoc,2018,7(8):e008257.
[14]Wang J,Zhao P,Gao Y,et al. The effects of Anti-IL-23p19 therapy on atherosclerosis development in ApoE(-/-) Mice[J]. J Interferon Cytokine Res ,2019,39(9):564-571.
[15]Wang J,He L,Li W,et al. A Role of IL-17 in rheumatoid arthritis patients complicated with atherosclerosis[J]. Front Pharmacol,2022,13:828933.
[16]Piros ?A,Szabó ?,Rencz F,et al. Impact of interleukin-17 inhibitor therapy on arterial intima-media thickness among severe psoriatic patients[J]. Life (Basel),2021,11(9):919.
[17]Marovt M,Marko PB,Pirnat M,et al. Effect of biologics targeting interleukin-23/-17 axis on subclinical atherosclerosis:results of a pilot study[J]. Clin Exp Dermatol,2020,45(5):560-564.
[18]Chiang N,Serhan CN. Specialized pro-resolving mediator network:an update on production and actions[J]. Essays Biochem,2020,64(3):443-462.
[19]Salazar J,Pirela D,Nava M,et al. Specialized proresolving lipid mediators:a potential therapeutic target for atherosclerosis[J]. Int J Mol Sci,2022,23(6):3133.
[20]de Jong RJ,Paulin N,Lemnitzer P,et al. Protective aptitude of annexin A1 in arterial neointima formation in atherosclerosis-prone mice—Brief report[J]. Arterioscler Thromb Vasc Biol,2017,37(2):312-315.
[21]Jelinic M,Kahlberg N,Leo CH,et al. Annexin-A1 deficiency exacerbates pathological remodelling of the mesenteric vasculature in insulin-resistant,but not insulin-deficient,mice[J]. Br J Pharmacol,2020,177(7):1677-1691.
[22]Uyy E,Suica VI,Boteanu RM,et al. Regulated cell death joins in atherosclerotic plaque silent progression[J]. Sci Rep,2022,12(1):2814.
[23]Xu S,Zhang J,Liu J,et al. The role of interleukin-10 family members in cardiovascular diseases[J]. Int Immunopharmacol,2021,94:107475.
[24]Shi H,Guo J,Yu Q,et al. CRISPR/Cas9 based blockade of IL-10 signaling impairs lipid and tissue homeostasis to accelerate atherosclerosis[J]. Front Immunol,2022,13:999470.
[25]Distasio N,Dierick F,Ebrahimian T,et al. Design and development of Branched Poly(?-aminoester) nanoparticles for interleukin-10 gene delivery in a mouse model of atherosclerosis[J]. Acta Biomater,2022,143:356-371.
[26]Hasturk H,Abdallah R,Kantarci A,et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis[J]. Arterioscler Thromb Vasc Biol,2015,35(5):1123-1133.
[27]Petri MH,Laguna-Fernandez A,Arnardottir H,et al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E(-/-) mice[J]. Br J Pharmacol,2017,174(22):4043-4054.
[28]Viola JR,Lemnitzer P,Jansen Y,et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice[J]. Circ Res,2016,119(9):1030-1038.
[29]Makino Y,Miyahara T,Nitta J,et al. Proresolving lipid mediators resolvin D1 and protectin D1 isomer attenuate neointimal hyperplasia in the rat carotid artery balloon injury model[J]. J Surg Res,2019,233:104-110.
[30]Miyahara T,Runge S,Chatterjee A,et al. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury[J]. FASEB J,2013,27(6):2220-2232.
[31]Bardin M,Pawelzik SC,Lagrange J,et al. The resolvin D2-GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice[J]. Biochem Pharmacol,2022,201:115075.
[32]Arnardottir H,Thul S,Pawelzik SC,et al. The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection[J]. J Clin Invest,2021,131(24):e142883.
[33]Dhawan UK,Singhal A,Subramanian M. Dead cell and debris clearance in the atherosclerotic plaque:mechanisms and therapeutic opportunities to promote inflammation resolution[J]. Pharmacol Res,2021,170:105699.
[34]Doran AC,Ozcan L,Cai B,et al. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis[J]. J Clin Invest,2017,127(11):4075-4089.
[35]Manickam V,Dhawan UK,Singh D,et al. Pomegranate peel extract decreases plaque necrosis and advanced atherosclerosis progression in Apoe (-/-) mice[J]. Front Pharmacol,2022,13:888300.
[36]Tao W,Yurdagul A Jr,Kong N,et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice[J]. Sci Transl Med,2020,12(553):eaay1063.
[37]Jarr KU,Nakamoto R,Doan BH,et al. Effect of CD47 blockade on vascular inflammation[J]. N Engl J Med,2021,384(4):382-383.
[38]Kojima Y,Volkmer JP,McKenna K,et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature,2016,536(7614):86-90.
[39]Chen L,Zhou Z,Hu C,et al. Platelet membrane-coated nanocarriers targeting plaques to deliver Anti-CD47 antibody for atherosclerotic therapy[J]. Research (Wash D C),2022,2022:9845459.
[40]Jarr KU,Ye J,Kojima Y,et al. The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis[J]. Nat Cardiovasc Res,2022,1(3):253-262.
[41]Morioka S,Perry JSA,Raymond MH,et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release[J]. Nature,2018,563(7733):714-718.
[42]Merlin J,Ivanov S,Dumont A,et al. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation[J]. Nat Metab,2021,3(10):1313-1326.
[43]McCubbrey AL,McManus SA,McClendon JD,et al. Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells[J]. Cell Rep,2022,38(2):110222.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(6):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]胥雪莲,何川.炎症与动脉粥样硬化[J].心血管病学进展,2015,(5):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
 XU Xuelian,HE Chuan.Inflammation and Atherosclerosis[J].Advances in Cardiovascular Diseases,2015,(6):634.[doi:10.3969/j.issn.1004-3934.2015.05.029]
[3]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[4]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(6):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(6):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(6):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(6):1304.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(6):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[12]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(6):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[13]张颖怡 刘金波 刘欢 赵娜 赵红薇 王宏宇.全身动脉粥样硬化斑块与脑梗死的关系:北京血管病变评价研究结果[J].心血管病学进展,2021,(3):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
 ZHANG YingyiLIU J inboLIU HuanZHAO NaZHAO HongweiWANG Hongyu.The Relationship Between Systematic Atherosclerotic Plaques and Cerebral Infarction:Results from Beijing Vascular Disease Evaluation Study[J].Advances in Cardiovascular Diseases,2021,(6):277.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.020]
[14]李佳珊 关秀茹.ABCA1:调控胆固醇逆向转运与炎症激活之间关系的研究新进展[J].心血管病学进展,2021,(7):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
 LI Jiashan,GUAN Xiuru.ABCA1: New Progress in Regulating the Relationship Between Cholesterol Reverse Transport and Inflammation Activation[J].Advances in Cardiovascular Diseases,2021,(6):649.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.018]
[15]原达 朱国斌.血小板P选择素及CD40/CD40L在动脉粥样硬化中的研究进展[J].心血管病学进展,2021,(10):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
 YUAN Da,ZHU Guobin.Research Progress of Platelet-Related P-Selectin and?D40L Pro-Inflammatory Effects in Atherosclerosis[J].Advances in Cardiovascular Diseases,2021,(6):928.[doi:10.16806/j.cnki.issn.1004-3934.2021.10.016]
[16]肖明瑛 苏冠华.PCSK9抑制剂多效性研究进展[J].心血管病学进展,2022,(2):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]
 XIAO MingyingSU Guanhua.Pleiotropic Effects of PCSK9 Inhibitors[J].Advances in Cardiovascular Diseases,2022,(6):124.[doi:10.16806/j.cnki.issn.1004-3934.2022.02.008]

更新日期/Last Update: 2023-07-21