[1]周铭涛 郭琰.基于5-脂氧合酶代谢通路的中药复方干预动脉粥样硬化炎症的新思路[J].心血管病学进展,2023,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.014]
 ZHOU Mingtao,GUO Yan.A New Idea of Chinese Herbal Compound in the Treatment of Atherosclerotic Inflammation Based on 5-Lipoxygenase Metabolite[J].Advances in Cardiovascular Diseases,2023,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.014]
点击复制

基于5-脂氧合酶代谢通路的中药复方干预动脉粥样硬化炎症的新思路()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年4期
页码:
350
栏目:
综述
出版日期:
2023-04-25

文章信息/Info

Title:
A New Idea of Chinese Herbal Compound in the Treatment of Atherosclerotic Inflammation Based on 5-Lipoxygenase Metabolite
作者:
周铭涛 郭琰
(云南省药物研究所 云南省中药和民族药新药创制企业重点实验室,云南 昆明 650111)
Author(s):
ZHOU Mingtao GUO Yan
(Yunnan Institute of Materia Medica,Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation,Kunming 650111 ,Yunnan,China)
关键词:
动脉粥样硬化5-脂氧合酶白三烯B4脂氧素中药复方
Keywords:
Atherosclerosis 5-lipoxygenase Leukotriene B4 Lipoxin Chinese herbal compound
DOI:
10.16806/j.cnki.issn.1004-3934.2023.04.014
摘要:
动脉粥样硬化(AS)是一种慢性炎症性病理过程,具有慢性炎症的“共同点”,即炎症消散的缺失和炎症介质的持续释放。抗炎一直是防治AS的有效途径,而促炎症消散则是近年来研究的热点,但很少有兼顾二者研究的报道,主要原因还是炎症介质和促炎症消散介质一般都由不同的信号通路所介导。5-脂氧合酶代谢产物白三烯B4(LTB4)和脂氧素(LX)在AS炎症中具有截然相反的作用特点。现系统阐述LTB4和LX在AS炎症中的表达及作用机制,再结合中药复方的多靶点多途径的整合调节作用,从抗炎和促炎症消散两方面干预AS炎症更具有优势,为中药复方干预AS炎症提供一种可能的理论依据和研究新思路。
Abstract:
As a chronic inflammatory disease of blood vessel,atherosclerosis (AS) has a “common ground” of the chronic inflammation. It includes the sustained release of inflammatory mediators and the lack of pro-resolving mediators. Anti-inflammatory is an effective way to prevent AS. And recent studies have found that the absence of inflammation resolution is also an important factor in the formation of AS. However,there are few reports on both studies. The main reason is that inflammatory mediators and pro-inflammatory resolution are generally mediated by different signal pathways. The 5-lipoxygenase metabolites leukotriene B4 ( LTB4) and lipoxin ( LX) have diametrically opposite characteristics in AS inflammation. The imbalance can promote the progression of AS inflammation. The multi-target and multi-channel integrated regulation of traditional Chinese medicine compound can take into account the two at the same time. It is more advantageous to intervene in AS inflammation from the aspects of anti-inflammatory and promoting inflammation. It can provide a possible theoretical basis and new ideas for the treatment of AS inflammation with Chinese medicine compound.

参考文献/References:

[1] 郭琰,刘栩岑,杨庆等. 炎症消散的缺失诱发As 斑块形成的作用机制及中药复方干预As 炎症新思路的探索[J]. 中国动脉硬化杂志,2015,23(11):1171-1176.

[2] Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules:a review[J]. J Adv Res,2018,11:57-66.

[3] Chen F,Ghosh A,Lin J,et al. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease[J]. Brain Behav Immun,2020,88:844-855.

[4] Haeggstr?m JZ. Leukotriene biosynthetic enzymes as therapeutic targets[J]. J Clin Invest, 2018,128(7):2680-2690.

[5] Shabaan MA,Kamal AM,Faggal SI,et al. Synthesis and biological evaluation of pyrazolone analogues as potential anti-inflammatory agents targeting cyclooxygenases and 5-lipoxygenase[J]. Arch Pharm (Weinheim),2020,353(4):e1900308.

[6] Spanbroek R,Hildner M,Steinhilber D,et al. 5-lipoxygenase expression in dendritic cells generated from CD34(+) hematopoietic progenitors and in lymphoid organs[J]. Blood,2000,96(12):3857-3865.

[7] Poirier SJ,Boudreau LH,Flamand N,et al. LPS induces ALOX5 promoter activation and 5-lipoxygenase expression in human monocytic cells[J]. Prostaglandins Leukot Essent Fatty Acids,2020,154:102078.

[8] Kumar RB,Purhonen P,Hebert H,et al. Arachidonic acid promotes the binding of 5-lipoxygenase on nanodiscs containing 5-lipoxygenase activating protein in the absence of calcium-ions[J]. PLoS One,2020,15(7):e0228607.

[9] Luo M,Jones SM,Phare SM,et al. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523[J]. J Biol Chem,2004,279(40):41512-41520.

[10] Lai XF,Qin HD,Guo LL,et al. Hypercholesterolemia increases the production of leukotriene B4 in neutrophils by enhancing the nuclear localization of 5-lipoxygenase[J]. Cell Physiol Biochem,2014,34(5):1723-1732.

[11] Radmark O,Werz O,Steinhilber D,et al. 5-Lipoxygenase:regulation of expression and enzyme activity[J]. Trends Biochem Sci,2007,32(7):332-341.

[12] Dupouy C,Saban L,Dupré-Crochet S. The lipidosome:the site of LTB4 synthesis,a mediator of sterile inflammation[J]. Med Sci (Paris),2020,36(5):528-530.

[13] Pal K,Feng X,Steinke JW,et al. Leukotriene A4 Hydrolase Activation and Leukotriene B4 Production by Eosinophils in Severe Asthma[J]. Am J Respir Cell Mol Biol,2019, 60(4):413-419.

[14] Horii Y,Nakaya M,Ohara H,et al. Leukotriene B4 receptor 1 exacerbates inflammation following myocardial infarction[J]. FASEB J,2020,34(6) :8749-8763.

[15] Kwon SY,Kim JH. Role of Leukotriene B4 receptor-2 in mast cells in allergic airway inflammation[J]. Int J Mol Sci,2019,20(12):2897.

[16] Gilbert NC,Gerstmeier J,Schexnaydre EE,et al. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products[J]. Nat Chem Biol,2020,16(7):783-790.

[17] Febbraio M,Podrez EA,Smith JD,et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest,2000,105(8):1049-1056.

[18] Mawhin MA,Tilly P,Zirka G,et al. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia[J]. Cardiovasc Res,2018,114(12) :1656-1666.

[19] Huang L,Zhao A,Wong F,et al. Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes[J]. Arterioscler Thromb Vasc Biol,2004, 24(10) :1783-1788.

[20] Yun MR,Im DS,Lee SJ,et al. 4-Hydroxynonenal enhances CD36 expression on murine macrophages via p38 MAPK-mediated activation of 5-lipoxygenase[J]. Free Radic Biol Med,2009,46(5):692-698.

[21] Dias IHK,Griffiths HR. Current and future directions for targeting lipoxin A4 in Alzheimer’s disease[J]. J Alzheimers Dis,2021 ,81(1):87-90..

[22] Hersberger M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis:leukotrienes,lipoxins and resolvins[J]. Clin Chem Lab Med,2010, 48(8):1063-1073.

[23] Chen YC,Su MC,Chin CH,et al. Formyl peptide receptor 1 up-regulation and formyl peptide receptor 2/3 down-regulation of blood immune cells along with defective lipoxin A4/resolvin D1 production in obstructive sleep apnea patients [J]. PLoS One,2019, 14(5):e0216607.

[24] Wei F,Gong W,Wang J,et al. Role of the lipoxin A4 receptor in the development of neutrophil extracellular traps in Leishmania infantum infection[J]. Parasit Vectors,2019, 12(1):275.

[25] Fu T,Mohan M,Brennan EP,et al. Therapeutic potential of lipoxin A4 in chronic inflammation :focus on cardiometabolic disease[J]. ACS Pharmacol Transl Sci,2020,3(1):43-55.

[26] Ryan A,Godson C. Lipoxins:regulators of resolution[J]. Curr Opin Pharmacol,2010,10(2):166-172.

[27] Chen Y,Zheng Y,Xin L,et al. 15-epi-lipoxin A4 inhibits TNF-α-induced tissue factor expression via the PI3K/AKT/ NF-κB axis in human umbilical vein endothelial cells[J]. Biomed Pharmacother,2019,117 :109099.

[28] Hu XH,Situ HL,Chen JP,et al. Lipoxin A4 alleviates lung injury in sepsis rats through p38/MAPK signaling pathway[J]. J Biol Regul Homeost Agents,2020,34(3):807-814.

[29] Li Y,Wang N,Ma Z,et al. Lipoxin A4 protects against paraquat?induced acute lung injury by inhibiting the TLR4/MyD88?mediated activation of the NF?κB and PI3K/AKT pathways[J]. Int J Mol Med,2021,47(5):86.

[30] Pang Y,Gan L,Wang X,et al. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE-/- mice and lipopolysaccharide-stimulated RAW264.7 macrophages[J]. Atherosclerosis,2019,284 :50-58.

[31] Sinha S,Doble M,Manju SL. 5-Lipoxygenase as a drug target:a review on trends in inhibitors structural design,SAR and mechanism based approach[J]. Bioorg Med Chem,2019,27(17):3745-3759.

[32] Gur ZT,Caliskan B,Banoglu E. Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis[J]. Eur J Med Chem,2018,153:34-48.

[33] 张代娟,宫英芳,刘江月,等. 青心酮对ApoE(-/-)小鼠动脉粥样硬化斑块中巨噬细胞5-脂氧合酶的影响[J]. 中药新药与临床药理,2012,(3):243-246.

[34] Peng SY,Liu Y,Bao XH,et al. Inhibition of 5-lipoxygenase and cyclooxygenase-2 pathways by pain-relieving plaster in macrophages[J]. Pharm Biol,2011,49(7):716-726.

[35] Murashima T,Yamasaki M,Nishizawa Y,et al. Proliferation of estrogen-responsive mouse tumor cell line B-1F stimulated by Saiboku-to,but inhibited by Scutellaria baicalensis,a component of Saiboku-to[J]. Oncol Rep,2009,22(2):257-264.

[36] 李玉洁,杨庆,翁小刚,等. 活血、解毒——中药干预AS炎症反应的探索与尝试[J]. 中国药理学通报,2010,(5):577-580.

[37] Tobin DM,Ramakrishnan L. TB:the Yin and Yang of lipid mediators[J]. Curr Opin Pharmacol,2013,13(4):641-645.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(4):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(4):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(4):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(4):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(4):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-05-17