[1]黄露霈 成泽东.肠道微生物细胞外囊泡对心血管系统影响的研究进展[J].心血管病学进展,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
 UANG Lupei,CHENG Zedong ?/html>.Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System[J].Advances in Cardiovascular Diseases,2023,(4):355.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.015]
点击复制

肠道微生物细胞外囊泡对心血管系统影响的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年4期
页码:
355
栏目:
综述
出版日期:
2023-04-25

文章信息/Info

Title:
Research Progress on the Effect of Intestinal Microbial?#160Extracellular Vesicles on Cardiovascular System
作者:
黄露霈1 成泽东2
(1.辽宁中医药大学研究生学院,辽宁 沈阳 110000;2.辽宁中医药大学科技处,辽宁 沈阳 110000)
Author(s):
?UANG Lupei 1CHENG Zedong 2?/html>
?1.Graduate School,Liaoning University of Traditional Chinese Medicine,Shenyang 110000,Liaoning,China; 2.Department of Science and Technology,Liaoning University of Traditional Chinese Medicine,Shenyang 110000,Liaoning,China)
关键词:
肠道菌群细胞外囊泡心血管疾病
Keywords:
Intestinal flora Extracellular vesicles Cardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2023.04.015
摘要:
心血管疾病(CVD)在中国发病率居高不下,动脉粥样硬化是多数心血管疾病的主要病理因素,但其发病机制仍不明确。近年来国内外学者逐步意识到肠道菌群在CVD中发挥不可替代的作用,而肠道微生物分泌的细胞外囊泡(EVs)与自体细胞来源的EVs类似,在细胞间通讯、增殖、分化和炎症等过程中起重要作用。目前国内外关于EVs在CVD的研究集中于宿主细胞来源的EVs,然而肠道细菌来源的EVs在炎症反应、脂质摄取和血管功能障碍方面的作用同样不可忽视,同时肠道来源的EVs因其特性或能成为药物载体和治疗靶点,有望通过疫苗接种实现对CVD的防治。现就肠道菌群的EVs对心血管系统的作用进行阐述,以期为CVD的发病机制和治疗价值提供理论依据。
Abstract:
The incidence of cardiovascular disease(CVD) is still high in China,and atherosclerosis(AS) is the main p athological basis for most cardiovascular disease,however the pathogenesis of AS hasn’t been figured out yet. Recent years,researchers at home and abroad have recognized that intestinal flora plays an irreplaceable role in CVD,and the extracellular vesicles (EVs) from i ntestinal flora is similar to those from host cells that they also have a huge influence on intercellular communication,proliferation,differentiation and inflammation. The current studies about the EVs of CVD are mainly focus on host cells,while the EVs from intestinal microflora also has a potential role in the inflammation,lipid uptake,vascular dysfunction of AS.Meanwhile,because of the characteristic,EVs from gut may become drug carrier and targets for treatment,and these EVs are expected to achieve the prevention and treatment of CVD by vaccination. This paper expounds the function of EVs derived from intestinal flora and the role of it in the pathogenesis of cardiovascular system,in order to provide theoretical basis for the pathogenesis and therapeutic value of CVD

参考文献/References:

[1] Konkoth A ,Saraswat R ,Dubrou C ,et al. Multifaceted role of extracellular vesicles in atherosclerosis[J]. Atherosclerosis,2021,319:121-131.

[2] 浦冬青,刘政,周超,等. 近10年动脉粥样硬化发病机制研究热点的可视化分析[J]. 世界科学技术:中医药现代化,2021,23(7):2276-2284.

[3] Macia L,Nanan R,Hosseini-Beheshti E,et al. Host- and microbiota-derived extracellular vesicles,immune function,and disease development[J]. Int Mol Sci,2019,21(1):107.

[4] Jonsson A L,B?ckhed F. Role of gut microbiota in atherosclerosis[J]. Nat Rev Cardiol,2017,14(2):79-87.

[5] Peng M,Liu X,Xu G. Extracellular vesicles as messengers in atherosclerosis[J]. J Cardiovasc Transl Res,2020,13(2):121-130.

[6] Kalluri R,Lebleu VS. The biology ,function,and biomedical applications of exosomes[J]. Science,2020,367(6478):eaau6977.

[7] Bishop DG,W ork E . An extracellular glycolipid produced by escherichia coli grown under lysine-limiting conditions[J]. Biochem J,1965,96(2):567-576.

[8] Tulkens J,de Wever O,Hendrix A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization[J]. Nat Protoc,2020,15(1):40-67.

[9] Toyofuku M,Nomura N,Eberl L. Types and origins of bacterial membrane vesicles[J]. Nat Rev Microbiol,2019,17(1):13-24.

[10] Díaz-Garrido N,Badia J,Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut[J]. J Extracell Vesicles,2021,10(13):e12161.

[11] Chelakkot C,Choi Y,Kim DK,et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Exp Mol Med,2018,50(2):e450.

[12] Costa TR,Felisberto-Rodrigues C,Meir A,et al. Secretion systems in Gram-negative bacteria:structural and mechanistic insights[J]. Nat Rev Microbiol,2015,13(6):343-359.

[13] Huang W,Meng L,Chen Y,et al. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy[J]. Acta Biomater,2022,140:102-115.

[14] Wang Y,Hoffmann JP,Baker SM ,et al. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles[J]. BMC Microbiol,2021,21(1):234.

[15] Bittel M,Reichert P,Sarfati I ,et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo[J]. J Extracell Vesicles,2021,10(12):e12159.

[16] Noval Rivas M,Wakita D,Franklin MK ,et al. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation[J]. Immunity,2019,51(3):508-521.e6.

[17] Chakaroun RM,Massier L,Kovacs P . Gut microbiome,intestinal permeability,and tissue bacteria in metabolic disease:perpetrators or bystanders?[J]. Nutrients,2020,12(4):1082.

[18] Saad MJ,Santos A,Prada PO . Linking gut microbiota and inflammation to obesity and insulin resistance[J]. Physiology (Bethesda),2016,31(4):283-293.

[19] Ziganshina EE,Sharifullina DM,Lozhkin AP,et al. Bacterial communities associated with atherosclerotic plaques from Russian individuals with atherosclerosis[J]. PloS One,2016,11(10):e0164836.

[20] Li N,Liu SF,Dong K ,et al. Exosome-transmitted miR-25 induced by H.pylori promotes vascular endothelial cell injury by targeting KLF2[J] . Front Cell Infect Microbiol,2019,9:366.

[21] Xia X,Zhang L,Chi J,et al. Helicobacter pylori infection impairs endothelial function through an exosome-mediated mechanism[J]. J Am Heart Assoc,2020,9(6):e014120.

[22] Badi SA,Motahhary A,Bahramali G,et al. The regulation of Niemann-Pick C1-Like 1 (NPC1L1) gene expression in opposite direction byBacteroides spp. and related outer membrane vesicles in Caco-2 cell line[J]. J Diabetes Metab Disord,2020,19(1):415-422.

[23] 孙常青,郭丽蓉,乔伟桐,等. NPC1L1抑制剂对冠心病患者血管内皮功能的影响[J]. 中国卫生标准管理,2021,12(6):114-117.

[24] Díez-Sainz E,Milagro FI,Riezu-Boj JI ,et al. Effects of gut microbiota-derived extracellular vesicles on obesity and diabetes and their potential modulation through diet[J]. J Physiol Biochem,2022,78(2):485-499.

[25] Ashrafian F,Shahriary A,Behrouzi A ,et al.Akkermansia muciniphila—Derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice[J]. Front Microbiol,2019,10:2155.

[26] Moosavi SM,Akhavan Sepahi A,Mousavi SF ,et al. The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model[J]. J Diabetes Metab Disord,2020,19(2):1061-1069.

相似文献/References:

[1]杨娟,综述,王佑华,等.肠道菌群与血管内炎症[J].心血管病学进展,2016,(3):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
 YANG Juan,WANG Youhua,YUAN Suyun.Relationship Between Gut Microbiota and Vascular Inflammation[J].Advances in Cardiovascular Diseases,2016,(4):263.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.012]
[2]张琪 宋晓鹏 任茂佳 吴广 赵兴胜.氧化三甲胺与心血管疾病的研究新进展[J].心血管病学进展,2020,(1):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
 ZHANG Qi,SONG Xiaopeng,REN Maojia,et al.Trimethylamine Oxide and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):81.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.022]
[3]李靖,任彭,努尔比耶·买买提,等.三甲胺-N-氧化物与冠心病和心力衰竭的研究进展[J].心血管病学进展,2020,(3):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
 LI Jing,REN Peng,Nuerbiye·Maimaiti,et al.Trimethylamine-N-oxide and Coronary Heart Disease and Heart Failure[J].Advances in Cardiovascular Diseases,2020,(4):272.[doi:10.16806/j.cnki.issn.1004-3934.2019.00.014]
[4]王猛 江洪.肠道菌群及其代谢产物与心房颤动的研究进展[J].心血管病学进展,2022,(3):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 WANG Meng,JIANG Hong.Gut Microbiota an d Its Metabolites in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(4):214.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(4):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[6]刘杏利 高中山 段豪亮 赵奕 马玉兰.肠道菌群及其代谢物与心律失常关系的研究进展[J].心血管病学进展,2022,(11):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
 LIU Xingli,GAO Zhongshan,DUAN Haoliang,et al.The Relationship Between Intestinal Flora and Its Metabolites and Arrhythmia[J].Advances in Cardiovascular Diseases,2022,(4):1002.[doi:10.16806/j.cnki.issn.1004-3934.2022.11.009]
[7]张嘉原 张莉.果糖代谢与血脂异常的研究进展[J].心血管病学进展,2022,(12):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
 ZHANG Jiayuan ZHANG Li.Fructose Metabolism and DyslipidemiaA Systematic Review[J].Advances in Cardiovascular Diseases,2022,(4):1114.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.013]
[8]卢燕 刘亚萍 罗强 张全波 汪汉.肠道菌群及其代谢物与痛风[J].心血管病学进展,2023,(2):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
 LU Yan,LIU Yaping,LUO Qiang,et al.Intestinal Flora and Its Metabolites and Gout[J].Advances in Cardiovascular Diseases,2023,(4):177.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.018]
[9]蒋振江 刘富强 王军奎.肠道菌群与肥胖的关系研究进展[J].心血管病学进展,2023,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
 JIANG Zhenjiang,LIU Fuqiang,WANG Junkui.The Relationship Between Gut Microbiota and Obesity[J].Advances in Cardiovascular Diseases,2023,(4):265.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.017]
[10]李帅 刘富强 王军奎.酒精摄入对肠道菌群的影响及其机制研究进展[J].心血管病学进展,2023,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]
 LI ShuaiLIU FuqiangWANG Junkui.Effects of Alcohol Intake on Intestinal Flora and Its Mechanism[J].Advances in Cardiovascular Diseases,2023,(4):172.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.017]

更新日期/Last Update: 2023-05-17