参考文献/References:
[1] Neinast M,Murashige D,Arany Z. Branched chain amino acids[J]. Annu Rev Physiol,2019,81:139-164.
[2] Zhang S,Zeng X,Ren M,et al. Novel metabolic and physiological functions of branched chain amino acids: a review[J]. J Anim Sci Biotechnol,2017,8:10.
[3] Ichihara A,Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase[J]. J Biochem,1966,59(2):160-169.
[4] Johnson WA,Connelly JL. Cellular localization and characterization of bovine liver branched-chain -keto acid dehydrogenases[J]. Biochemistry,1972,11(10):1967-1973.
[5] Jang C,Oh SF,Wada S,et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance[J]. Nat Med,2016,22(4):421-426.
[6] Patel MS,Nemeria NS,Furey W,et al. The pyruvate dehydrogenase complexes: structure-based function and regulation[J]. J Biol Chem,2014,289(24):16615-16623.
[7] Harris RA,Paxton R,Powell SM,et al. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification[J]. Adv Enzyme Regul,1986,25:219-237.
[8] East MP,Laitinen T,Asquith C. BCKDK: an emerging kinase target for metabolic diseases and cancer[J]. Nat Rev Drug Discov,2021,20(7):498.
[9] Biswas D,Duffley L,Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling,metabolic remodeling,and energy homeostasis[J]. FASEB J,2019,33(8):8711-8731.
[10] Kim DH,Sarbassov DD,Ali SM,et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell,2002,110(2):163-175.
[11] Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism[J]. Nutrients,2016,8(7):405.
[12] McGarrah RW,White PJ. Branched-chain amino acids in cardiovascular disease[J]. Nat Rev Cardiol,2023,20(2):77-89.
[13] Li Y,Xiong Z,Yan W,et al. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation[J]. Theranostics,2020,10(12):5623-5640.
[14] Green CL,Lamming DW,Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity[J]. Nat Rev Mol Cell Biol,2022,23(1):56-73.
[15] Sun H,Olson KC,Gao C,et al. Catabolic defect of branched-chain amino acids promotes heart failure[J]. Circulation,2016,133(21):2038-2049.
[16] Lopaschuk GD,Karwi QG,Tian R,et al. Cardiac energy metabolism in heart failure[J]. Circ Res,2021,128(10):1487-1513.
[17] Prosdocimo DA,Anand P,Liao X,et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism[J]. J Biol Chem,2014,289(9):5914-5924.
[18] Fan L,Sweet DR,Prosdocimo DA,et al. Muscle Krüppel-like factor 15 regulates lipid flux and systemic metabolic homeostasis[J]. J Clin Invest,2021,131(4):e139496.
[19] Shao D,Villet O,Zhang Z,et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation[J]. Nat Commun,2018,9(1):2935.
[20] Uddin GM,Zhang L,Shah S,et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure[J]. Cardiovasc Diabetol,2019,18(1):86.
[21] Lerman JB,Giamberardino SN,Hernandez AF,et al. Plasma metabolites associated with functional and clinical outcomes in heart failure with reduced ejection fraction with and without type 2 diabetes[J]. Sci Rep,2022,12(1):9183.
[22] van der Laan AM,Piek JJ,van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI[J]. Nat Rev Cardiol,2009,6(8):515-523.
[23] Du X,Li Y,Wang Y,et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure[J]. Life Sci,2018,209:167-172.
[24] Shah SH,Bain JR,Muehlbauer MJ,et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events[J]. Circ Cardiovasc Genet,2010,3(2):207-214.
[25] Fan Y,Li Y,Chen Y,et al. Comprehensive metabolomic characterization of coronary artery?diseases[J]. J Am Coll Cardiol,2016,68(12):1281-1293.
[26] Wang W,Zhang F,Xia Y,et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2016,311(5):H1160-H1169.
[27] Satomi S,Morio A,Miyoshi H,et al. Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury[J]. Life Sci,2020,245:117368.
[28] Walejko JM,Christopher BA,Crown SB,et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart[J]. Nat Commun,2021,12(1):1680.
[29] Jiang YJ,Sun SJ,Cao WX,et al. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR[J]. Biochim Biophys Acta Mol Basis Dis,2021,1867(1):165980.
[30] Dalle Pezze P,Ruf S,Sonntag AG,et al. A systems study reveals concurrent activation of AMPK and mTOR by amino acids[J]. Nat Commun,2016,7:13254.
[31] Yang M,Linn BS,Zhang Y,et al. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(9):2293-2302.
[32] Nakai A,Yamaguchi O,Takeda T,et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J]. Nat Med,2007,13(5):619-624.
[33] Mitr?ga K,Zorniak M,Varghese B,et al. Beneficial effects of l-leucine and l-valine on arrhythmias,hemodynamics and myocardial morphology in rats[J]. Pharmacol Res,2011,64(3):218-225.
[34] Portero V,Nicol T,Podliesna S,et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic[J]. Cardiovasc Res,2022,118(7):1742-1757.
[35] Wang XJ,Yang X,Wang RX,et al. Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways[J]. Biosci Rep,2016,36(3):e00346.
[36] Harada M,Tadevosyan A,Qi X,et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: potential role in metabolic adaptation and prevention of progression[J]. J Am Coll Cardiol,2015,66(1):47-58.
[37] Bodiga VL,Eda SR,Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy[J]. Heart Fail Rev,2014,19(1):49-63.
[38] Hart GW,Housley MP,Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature,2007,446(7139):1017-1022.
[39] Zheng H,Zhu H,Liu X,et al. Mitophagy in diabetic cardiomyopathy:roles and mechanisms[J]. Front Cell Dev Biol,2021,9:750382.
[40] Salvatore T,Pafundi PC,Galiero R,et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms[J]. Front Med (Lausanne),2021,8:695792.
[41] White PJ,McGarrah RW,Herman MA,et al. Insulin action,type 2 diabetes,and branched-chain amino acids: A two-way street[J]. Mol Metab,2021,52:101261.
[42] Vanweert F,Neinast M,Tapia EE,et al. A randomized placebo-controlled clinical trial for pharmacological activation of BCAA catabolism in patients with type 2 diabetes[J]. Nat Commun,2022,13(1):3508.
[43] White PJ,McGarrah RW,Grimsrud PA,et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase[J]. Cell Metab,2018,27(6):1281-1293.e7.
[44] Ye Z,Wang S,Zhang C,et al. Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids[J]. Front Endocrinol (Lausanne),2020,11:617.
[45] D’Antona G,?Ragni M, Cardile A,?et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice[J]. Cell Metab,2010,12(4):362-372.
[46] Olczak KJ,Taylor-Bateman V,Nicholls HL,et al. Hypertension genetics past,present and future applications[J]. J Intern Med,2021,290(6):1130-1152.
[47] Yang R,Dong J,Zhao H,et al. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors[J]. PLoS One,2014,9(6):e99598.
[48] Siomkaj?o M,Rybka J,Mierzcha?a-Pasierb M,et al. Specific plasma amino acid disturbances associated with metabolic syndrome[J]. Endocrine,2017,58(3):553-562.
[49] Mahbub MH,Yamaguchi N,Hase R,et al. Plasma branched-chain and aromatic amino acids in relation to hypertension[J]. 2020,12(12):3791.
[50] Zhenyukh O,Civantos E,Ruiz-Ortega M,et al. High concentration of branched-chain amino acids promotes oxidative stress,inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation[J]. Free Radic Biol Med,2017,104:165-177.
[51] Zhenyukh O,González-Amor M,Rodrigues-Diez RR,et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation[J]. J Cell Mol Med,2018,22(10):4948-4962.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(4):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(4):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(4):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
[11]苏小伟,周华.支链氨基酸与心血管疾病关系的研究进展[J].心血管病学进展,2023,(9):773.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.002]
SU Xiaowei,ZHOU Hua.The Relationship Between Branched Chain Amino Acids and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(4):773.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.002]