[1]史文轲 谢赛阳 邓伟.支链氨基酸与心血管疾病的研究进展[J].心血管病学进展,2023,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.009]
 SHI wenke,XIE Saiyang,DENG Wei.Branched-Chain Amino Acid and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2023.04.009]
点击复制

支链氨基酸与心血管疾病的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年4期
页码:
326
栏目:
综述
出版日期:
2023-04-25

文章信息/Info

Title:
Branched-Chain Amino Acid and Cardiovascular Diseases
作者:
史文轲 谢赛阳 邓伟
(武汉大学人民医院心血管内科 代谢与相关慢病湖北省重点实验室,湖北 武汉 430000)
Author(s):
SHI wenke XIE Saiyang DENG Wei
(Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, China)
关键词:
支链氨基酸心血管疾病代谢
Keywords:
Branched-chain amino acidCardiovascular diseasesmetabolism
DOI:
10.16806/j.cnki.issn.1004-3934.2023.04.009
摘要:
支链氨基酸是哺乳动物体内的重要营养物质,支链氨基酸代谢稳态对心功能的维持至关重要,同时参与多种疾病的发生发展过程。近年来也有越来越多的研究表明,支链氨基酸的代谢异常和心血管疾病及多种代谢性疾病有着紧密的联系。现对支链氨基酸代谢过程进行概述,就其在心力衰竭、心肌梗死、心律失常、缺血再灌注损伤、糖尿病心肌病、高血压等心血管疾病中的研究进展进行综述,并对未来研究方向予以展望。
Abstract:
Branched-chain amino acid (BCAA) are important nutrients in mammals. The metabolic homeostasis of BCAA is crucial to the maintenance of cardiac function, and is involved in the occurrence and development of various diseases. In recent years, more and more studies have shown that the abnormal metabolism of BCAA is closely related to cardiovascular diseases and various metabolic diseases. In this paper, the metabolic process of BCAA is summarized, and the research progress of BCAA in heart failure, myocardial infarction, arrhythmia, ischemia-reperfusion injury, diabetic cardiomyopathy, hypertension and other cardiovascular diseases is reviewed, and the future research direction is prospected

参考文献/References:

[1] Neinast M,Murashige D,Arany Z. Branched chain amino acids[J]. Annu Rev Physiol,2019,81:139-164.

[2] Zhang S,Zeng X,Ren M,et al. Novel metabolic and physiological functions of branched chain amino acids: a review[J]. J Anim Sci Biotechnol,2017,8:10.

[3] Ichihara A,Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase[J]. J Biochem,1966,59(2):160-169.

[4] Johnson WA,Connelly JL. Cellular localization and characterization of bovine liver branched-chain -keto acid dehydrogenases[J]. Biochemistry,1972,11(10):1967-1973.

[5] Jang C,Oh SF,Wada S,et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance[J]. Nat Med,2016,22(4):421-426.

[6] Patel MS,Nemeria NS,Furey W,et al. The pyruvate dehydrogenase complexes: structure-based function and regulation[J]. J Biol Chem,2014,289(24):16615-16623.

[7] Harris RA,Paxton R,Powell SM,et al. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification[J]. Adv Enzyme Regul,1986,25:219-237.

[8] East MP,Laitinen T,Asquith C. BCKDK: an emerging kinase target for metabolic diseases and cancer[J]. Nat Rev Drug Discov,2021,20(7):498.

[9] Biswas D,Duffley L,Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling,metabolic remodeling,and energy homeostasis[J]. FASEB J,2019,33(8):8711-8731.

[10] Kim DH,Sarbassov DD,Ali SM,et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell,2002,110(2):163-175.

[11] Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism[J]. Nutrients,2016,8(7):405.

[12] McGarrah RW,White PJ. Branched-chain amino acids in cardiovascular disease[J]. Nat Rev Cardiol,2023,20(2):77-89.

[13] Li Y,Xiong Z,Yan W,et al. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation[J]. Theranostics,2020,10(12):5623-5640.

[14] Green CL,Lamming DW,Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity[J]. Nat Rev Mol Cell Biol,2022,23(1):56-73.

[15] Sun H,Olson KC,Gao C,et al. Catabolic defect of branched-chain amino acids promotes heart failure[J]. Circulation,2016,133(21):2038-2049.

[16] Lopaschuk GD,Karwi QG,Tian R,et al. Cardiac energy metabolism in heart failure[J]. Circ Res,2021,128(10):1487-1513.

[17] Prosdocimo DA,Anand P,Liao X,et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism[J]. J Biol Chem,2014,289(9):5914-5924.

[18] Fan L,Sweet DR,Prosdocimo DA,et al. Muscle Krüppel-like factor 15 regulates lipid flux and systemic metabolic homeostasis[J]. J Clin Invest,2021,131(4):e139496.

[19] Shao D,Villet O,Zhang Z,et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation[J]. Nat Commun,2018,9(1):2935.

[20] Uddin GM,Zhang L,Shah S,et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure[J]. Cardiovasc Diabetol,2019,18(1):86.

[21] Lerman JB,Giamberardino SN,Hernandez AF,et al. Plasma metabolites associated with functional and clinical outcomes in heart failure with reduced ejection fraction with and without type 2 diabetes[J]. Sci Rep,2022,12(1):9183.

[22] van der Laan AM,Piek JJ,van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI[J]. Nat Rev Cardiol,2009,6(8):515-523.

[23] Du X,Li Y,Wang Y,et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure[J]. Life Sci,2018,209:167-172.

[24] Shah SH,Bain JR,Muehlbauer MJ,et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events[J]. Circ Cardiovasc Genet,2010,3(2):207-214.

[25] Fan Y,Li Y,Chen Y,et al. Comprehensive metabolomic characterization of coronary artery?diseases[J]. J Am Coll Cardiol,2016,68(12):1281-1293.

[26] Wang W,Zhang F,Xia Y,et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2016,311(5):H1160-H1169.

[27] Satomi S,Morio A,Miyoshi H,et al. Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury[J]. Life Sci,2020,245:117368.

[28] Walejko JM,Christopher BA,Crown SB,et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart[J]. Nat Commun,2021,12(1):1680.

[29] Jiang YJ,Sun SJ,Cao WX,et al. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR[J]. Biochim Biophys Acta Mol Basis Dis,2021,1867(1):165980.

[30] Dalle Pezze P,Ruf S,Sonntag AG,et al. A systems study reveals concurrent activation of AMPK and mTOR by amino acids[J]. Nat Commun,2016,7:13254.

[31] Yang M,Linn BS,Zhang Y,et al. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(9):2293-2302.

[32] Nakai A,Yamaguchi O,Takeda T,et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J]. Nat Med,2007,13(5):619-624.

[33] Mitr?ga K,Zorniak M,Varghese B,et al. Beneficial effects of l-leucine and l-valine on arrhythmias,hemodynamics and myocardial morphology in rats[J]. Pharmacol Res,2011,64(3):218-225.

[34] Portero V,Nicol T,Podliesna S,et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic[J]. Cardiovasc Res,2022,118(7):1742-1757.

[35] Wang XJ,Yang X,Wang RX,et al. Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways[J]. Biosci Rep,2016,36(3):e00346.

[36] Harada M,Tadevosyan A,Qi X,et al. Atrial fibrillation activates AMP-dependent protein kinase and its regulation of cellular calcium handling: potential role in metabolic adaptation and prevention of progression[J]. J Am Coll Cardiol,2015,66(1):47-58.

[37] Bodiga VL,Eda SR,Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy[J]. Heart Fail Rev,2014,19(1):49-63.

[38] Hart GW,Housley MP,Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature,2007,446(7139):1017-1022.

[39] Zheng H,Zhu H,Liu X,et al. Mitophagy in diabetic cardiomyopathy:roles and mechanisms[J]. Front Cell Dev Biol,2021,9:750382.

[40] Salvatore T,Pafundi PC,Galiero R,et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms[J]. Front Med (Lausanne),2021,8:695792.

[41] White PJ,McGarrah RW,Herman MA,et al. Insulin action,type 2 diabetes,and branched-chain amino acids: A two-way street[J]. Mol Metab,2021,52:101261.

[42] Vanweert F,Neinast M,Tapia EE,et al. A randomized placebo-controlled clinical trial for pharmacological activation of BCAA catabolism in patients with type 2 diabetes[J]. Nat Commun,2022,13(1):3508.

[43] White PJ,McGarrah RW,Grimsrud PA,et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase[J]. Cell Metab,2018,27(6):1281-1293.e7.

[44] Ye Z,Wang S,Zhang C,et al. Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids[J]. Front Endocrinol (Lausanne),2020,11:617.

[45] D’Antona G,?Ragni M, Cardile A,?et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice[J]. Cell Metab,2010,12(4):362-372.

[46] Olczak KJ,Taylor-Bateman V,Nicholls HL,et al. Hypertension genetics past,present and future applications[J]. J Intern Med,2021,290(6):1130-1152.

[47] Yang R,Dong J,Zhao H,et al. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors[J]. PLoS One,2014,9(6):e99598.

[48] Siomkaj?o M,Rybka J,Mierzcha?a-Pasierb M,et al. Specific plasma amino acid disturbances associated with metabolic syndrome[J]. Endocrine,2017,58(3):553-562.

[49] Mahbub MH,Yamaguchi N,Hase R,et al. Plasma branched-chain and aromatic amino acids in relation to hypertension[J]. 2020,12(12):3791.

[50] Zhenyukh O,Civantos E,Ruiz-Ortega M,et al. High concentration of branched-chain amino acids promotes oxidative stress,inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation[J]. Free Radic Biol Med,2017,104:165-177.

[51] Zhenyukh O,González-Amor M,Rodrigues-Diez RR,et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation[J]. J Cell Mol Med,2018,22(10):4948-4962.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(4):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(4):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(4):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(4):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(4):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
[11]苏小伟,周华.支链氨基酸与心血管疾病关系的研究进展[J].心血管病学进展,2023,(9):773.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.002]
 SU Xiaowei,ZHOU Hua.The Relationship Between Branched Chain Amino Acids and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2023,(4):773.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.002]

更新日期/Last Update: 2023-05-17