参考文献/References:
[1] Du X,Gao H,Jaffe D,et al. M-type K+ channels in peripheral nociceptive pathways [J]. Br J Pharmacol,2018,175(12):2158-2172.
[2] Gamper N,Shapiro MS. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels [J]. J Gen Physiol,2003,122(1):17-31.
[3] Tobelaim WS,Dvir M,Lebel G,et al. Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel[J]. Proc Natl Acad Sci U S A,2017,114(5):E869-E878.
[4] Abramochkin DV,Hassinen M,Vornanen M. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K+ current (I Ks) are expressed in zebrafish (Danio rerio) heart[J]. Pflugers Arch,2018,470(12):1753-1764.
[5] Thompson E,Eldstrom J,Fedida D. Hormonal signaling actions on Kv7.1 (KCNQ1) channels[J]. Annu Rev Pharmacol Toxicol,2021,61:381-400.
[6] Brown DA,Abogadie FC,Allen TG,et al. Muscarinic mechanisms in nerve cells[J]. Life Sci,1997,60(13-14):1137-1144.
[7] Abbott GW. KCNQs:ligand- and voltage-gated potassium channels[J]. Front Physiol,2020,11:583.
[8] Meisel E,Tobelaim W,Dvir M,et al. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions[J]. Channels (Austin),2018,12(1):89-99.
[9] Schroeder BC,Waldegger S,Fehr S,et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3[J]. Nature,2000,403(6766):196-199.
[10] Dvir M,Strulovich R,Sachyani D,et al. Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP2[J]. J Cell Sci,2014,127(Pt 18):3943-3955.
[11] Hoshi N,Zhang JS,Omaki M,et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists[J]. Nat Neurosci,2003,6(6):564-571.
[12] Tjugen TB,Flaa A,Kjeldsen SE. The prognostic significance of heart rate for cardiovascular disease and hypertension[J]. Curr Hypertens Rep,2010,12(3):162-169.
[13] Davis H,Herring N,Paterson DJ. Downregulation of M current is coupled to membrane excitability in sympathetic neurons before the onset of hypertension[J]. Hypertension,2020,76(6):1915-1923.
[14] Sheng ZF,Zhang H,Zheng P,et al. Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension[J]. Cardiovasc Res,2022,118(2):585-596.
[15] Berg T. M-currents(Kv7.2-7.3/KCNQ2-KCNQ3) are responsible for dysfunctional autonomic control in hypertensive rats[J]. Front Physiol,2016,7:584.
[16] Tsai Y M,Jones F,Mullen P,et al. Vascular Kv7 channels control intracellular Ca(2+) dynamics in smooth muscle[J]. Cell Calcium,2020,92:102283.
[17] Jepps TA,Chadha PS,Davis AJ,et al. Downregulation of Kv7.4 channel activity in primary and secondary hypertension[J]. Circulation,2011,124(5):602-611.
[18] Berg T. Kv7(KCNQ)-K+-channels influence total peripheral resistance in female but not male rats,and hamper catecholamine release in hypertensive rats of both sexes[J]. Front Physiol,2018,9:117.
[19] Stott JB,Barrese V,Greenwood IA. Kv7 channel activation underpins EPAC-dependent relaxations of rat arteries[J]. Arterioscler Thromb Vasc Biol,2016,36(12):2404-2411.
[20] Lindman J,Khammy MM,Lundegaard PR,et al. Microtubule regulation of Kv7 channels orchestrates cAMP-mediated vasorelaxations in rat arterial smooth muscle[J]. Hypertension,2018,71(2):336-345.
[21] Lim GB. Reappraisal of LQTS-causing genes[J]. Nat Rev Cardiol,2020,17(4):200-201.
[22] Hammami Bomholtz S,Refaat M,Buur Steffensen A,et al. Functional phenotype variations of two novel KV7.1 mutations identified in patients with Long QT syndrome[J]. Pacing Clin Electrophysiol,2020,43(2):210-216.
[23] González-Garrido A,Domínguez-Pérez M,Jacobo-Albavera L,et al. Compound heterozygous KCNQ1 mutations causing recessive romano-ward syndrome:functional characterization by mutant co-expression[J]. Front Cardiovasc Med,2021,8:625449.
[24] Loussouarn G,Baró I,Escande D. KCNQ1 K+ channel-mediated cardiac channelopathies [J]. Methods Mol Biol,2006,337:167-183.
[25] Howard RJ,Clark KA,Holton JM,et al. Structural insight into KCNQ (Kv7) channel assembly and channelopathy[J]. Neuron,2007,53(5):663-675.
[26] Synková I,Bébarová M,Andr?ová I,et al. Long-QT founder variant T309I-Kv7.1 with dominant negative pattern may predispose delayed afterdepolarizations under β-adrenergic stimulation[J]. Sci Rep,2021,11(1):3573.
[27] Kapplinger JD,Erickson A,Asuri S,et al. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1[J]. J Med Genet,2017,54(6):390-398.
[28] Perez-Vizcaino F,Cogolludo A,Mondejar-Parre?o G. Transcriptomic profile of cationic channels in human pulmonary arterial hypertension[J]. Sci Rep,2021,11(1):15829.
[29] Mondéjar-Parre?o G,Barreira B,Callejo M,et al. Uncovered contribution of Kv7 channels to pulmonary vascular tone in pulmonary arterial hypertension[J]. Hypertension,2020,76(4):1134-1146.
[30] Mondéjar-Parre?o G,Moral-Sanz J,Barreira B,et al. Activation of KV7 channels as a novel mechanism for NO/cGMP-induced pulmonary vasodilation[J]. Br J Pharmacol,2019,176(13):2131-2145.
[31] Al-Chawishly M,Loveland O,Gurney AM. Kv7 channels in cyclic-nucleotide dependent relaxation of rat intra-pulmonary artery[J]. Biomolecules,2022,12(3):429.
相似文献/References:
[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(12):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(12):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(12):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(12):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]