[1]徐辽 刘育.Kv7通道与心血管疾病[J].心血管病学进展,2022,(12):1127.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.016]
 XU Liao,LIU Yu.Kv7 Channels and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2022,(12):1127.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.016]
点击复制

Kv7通道与心血管疾病()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年12期
页码:
1127
栏目:
综述
出版日期:
2022-12-25

文章信息/Info

Title:
Kv7 Channels and Cardiovascular Diseases
作者:
徐辽 刘育
(武汉大学人民医院心内科 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉430060)
Author(s):
XU Liao LIU Yu
(Department of Cardiology,Renmin Hospital of Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
Kv7通道心血管疾病高血压心律失常肺动脉高压
Keywords:
Kv7 Channels Cardiovascular Diseases Hypertension Arrhythmia Pulmonary Hypertension
DOI:
10.16806/j.cnki.issn.1004-3934.2022.12.016
摘要:
Kv7通道是电压门控钾通道,包括Kv7.1~Kv7.5五种亚型。Kv7通道广泛分布于神经系统、心肌细胞和平滑肌细胞,在控制细胞兴奋性中发挥重要作用,与多种心血管生理过程和病理状态有关。现综述Kv7通道的生理调控机制,以及该通道与心血管疾病关系的最新进展。
Abstract:
Kv7 channels are a small family of voltage-gated potassium (K+) channel subunits,comprising 5 members,Kv7.1-Kv7.5. Kv7 channels are widely distributed in the nervous system,cardiomyocytes and smooth muscle cells,which play an important role in controlling cell excitability and are related to various physiological processes and pathological states. This article mainly reviews the physiological regulation mechanism of the Kv7 channels and the latest progress in the relationship between the Kv7 channels and cardiovascular diseases

参考文献/References:

[1] Du X,Gao H,Jaffe D,et al. M-type K+ channels in peripheral nociceptive pathways [J]. Br J Pharmacol,2018,175(12):2158-2172.

[2] Gamper N,Shapiro MS. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels [J]. J Gen Physiol,2003,122(1):17-31.

[3] Tobelaim WS,Dvir M,Lebel G,et al. Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel[J]. Proc Natl Acad Sci U S A,2017,114(5):E869-E878.

[4] Abramochkin DV,Hassinen M,Vornanen M. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K+ current (I Ks) are expressed in zebrafish (Danio rerio) heart[J]. Pflugers Arch,2018,470(12):1753-1764.

[5] Thompson E,Eldstrom J,Fedida D. Hormonal signaling actions on Kv7.1 (KCNQ1) channels[J]. Annu Rev Pharmacol Toxicol,2021,61:381-400.

[6] Brown DA,Abogadie FC,Allen TG,et al. Muscarinic mechanisms in nerve cells[J]. Life Sci,1997,60(13-14):1137-1144.

[7] Abbott GW. KCNQs:ligand- and voltage-gated potassium channels[J]. Front Physiol,2020,11:583.

[8] Meisel E,Tobelaim W,Dvir M,et al. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions[J]. Channels (Austin),2018,12(1):89-99.

[9] Schroeder BC,Waldegger S,Fehr S,et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3[J]. Nature,2000,403(6766):196-199.

[10] Dvir M,Strulovich R,Sachyani D,et al. Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP2[J]. J Cell Sci,2014,127(Pt 18):3943-3955.

[11] Hoshi N,Zhang JS,Omaki M,et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists[J]. Nat Neurosci,2003,6(6):564-571.

[12] Tjugen TB,Flaa A,Kjeldsen SE. The prognostic significance of heart rate for cardiovascular disease and hypertension[J]. Curr Hypertens Rep,2010,12(3):162-169.

[13] Davis H,Herring N,Paterson DJ. Downregulation of M current is coupled to membrane excitability in sympathetic neurons before the onset of hypertension[J]. Hypertension,2020,76(6):1915-1923.

[14] Sheng ZF,Zhang H,Zheng P,et al. Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension[J]. Cardiovasc Res,2022,118(2):585-596.

[15] Berg T. M-currents(Kv7.2-7.3/KCNQ2-KCNQ3) are responsible for dysfunctional autonomic control in hypertensive rats[J]. Front Physiol,2016,7:584.

[16] Tsai Y M,Jones F,Mullen P,et al. Vascular Kv7 channels control intracellular Ca(2+) dynamics in smooth muscle[J]. Cell Calcium,2020,92:102283.

[17] Jepps TA,Chadha PS,Davis AJ,et al. Downregulation of Kv7.4 channel activity in primary and secondary hypertension[J]. Circulation,2011,124(5):602-611.

[18] Berg T. Kv7(KCNQ)-K+-channels influence total peripheral resistance in female but not male rats,and hamper catecholamine release in hypertensive rats of both sexes[J]. Front Physiol,2018,9:117.

[19] Stott JB,Barrese V,Greenwood IA. Kv7 channel activation underpins EPAC-dependent relaxations of rat arteries[J]. Arterioscler Thromb Vasc Biol,2016,36(12):2404-2411.

[20] Lindman J,Khammy MM,Lundegaard PR,et al. Microtubule regulation of Kv7 channels orchestrates cAMP-mediated vasorelaxations in rat arterial smooth muscle[J]. Hypertension,2018,71(2):336-345.

[21] Lim GB. Reappraisal of LQTS-causing genes[J]. Nat Rev Cardiol,2020,17(4):200-201.

[22] Hammami Bomholtz S,Refaat M,Buur Steffensen A,et al. Functional phenotype variations of two novel KV7.1 mutations identified in patients with Long QT syndrome[J]. Pacing Clin Electrophysiol,2020,43(2):210-216.

[23] González-Garrido A,Domínguez-Pérez M,Jacobo-Albavera L,et al. Compound heterozygous KCNQ1 mutations causing recessive romano-ward syndrome:functional characterization by mutant co-expression[J]. Front Cardiovasc Med,2021,8:625449.

[24] Loussouarn G,Baró I,Escande D. KCNQ1 K+ channel-mediated cardiac channelopathies [J]. Methods Mol Biol,2006,337:167-183.

[25] Howard RJ,Clark KA,Holton JM,et al. Structural insight into KCNQ (Kv7) channel assembly and channelopathy[J]. Neuron,2007,53(5):663-675.

[26] Synková I,Bébarová M,Andr?ová I,et al. Long-QT founder variant T309I-Kv7.1 with dominant negative pattern may predispose delayed afterdepolarizations under β-adrenergic stimulation[J]. Sci Rep,2021,11(1):3573.

[27] Kapplinger JD,Erickson A,Asuri S,et al. KCNQ1 p.L353L affects splicing and modifies the phenotype in a founder population with long QT syndrome type 1[J]. J Med Genet,2017,54(6):390-398.

[28] Perez-Vizcaino F,Cogolludo A,Mondejar-Parre?o G. Transcriptomic profile of cationic channels in human pulmonary arterial hypertension[J]. Sci Rep,2021,11(1):15829.

[29] Mondéjar-Parre?o G,Barreira B,Callejo M,et al. Uncovered contribution of Kv7 channels to pulmonary vascular tone in pulmonary arterial hypertension[J]. Hypertension,2020,76(4):1134-1146.

[30] Mondéjar-Parre?o G,Moral-Sanz J,Barreira B,et al. Activation of KV7 channels as a novel mechanism for NO/cGMP-induced pulmonary vasodilation[J]. Br J Pharmacol,2019,176(13):2131-2145.

[31] Al-Chawishly M,Loveland O,Gurney AM. Kv7 channels in cyclic-nucleotide dependent relaxation of rat intra-pulmonary artery[J]. Biomolecules,2022,12(3):429.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(12):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(12):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(12):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(12):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(12):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(12):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

更新日期/Last Update: 2023-02-03