[1
]
胡盛寿
,
高
润霖
,
刘力生
,
等
.?span style="font-family: 宋体;">《中国心血管病报告2018》概要[J].?span style="font-family: 宋体;">中国循环杂志,2019,34(3):209-220.
[2
]
凯赛尔江
·卡地尔
,
艾克力亚尔·艾尼瓦尔
,
马翔
.?span style="font-family: 宋体;">人工智能在主动脉夹层影像学诊断与风险预测中的应用[J].?span style="font-family: 宋体;">中华心血管病杂志,2021,49(11):1152-1156.
[3
]Premaladha J
,
Ravichandran KS. Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms[J].?span style="font-family: "Times New Roman";">J Med Syst,2016,40(4):96.
[4]Botvinick M,Wang JX,Dabney W,et al. Deep reinforcement learning and its neuroscientific implications[J]. Neuron,2020,107(4):603-616.
[5
]Wen B
,
Zeng WF
,
Liao Y
,
et al. Deep learning in proteomics[J]. Proteomics
,
2020
,
20(21-22)
:
e
1900335.
[6
]Sodickson A
,
Baeyens PF
,
Andriole KP
,
et al. Recurrent CT
,
cumulative radiation exposure
,
and associated radiation-induced cancer risks from CT of adults[J]. Radiology
,
2009
,
251(1)
:
175-184.
[7
]Benz DC
,
Fuchs TA
,
Gr?i C
,
et al. Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography[J].?/span>Eur Heart J Cardiovasc Imaging,2018,19(2):193-198.
[8
]Liu P
,
Wang M
,
Wang Y
,
et al. Impact of deep learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction
:
a prospective study[J].?/span>Acad Radiol,2020,27(9):1241-1248.
[9
]Benz DC
,
Benetos G
,
Rampidis G
,
et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography
:
impact on noise
,
image quality and diagnostic accuracy[J].?/span>J Cardiovasc Comput Tomogr,2020,14(5):444-451.
[10
]Hong JH
,
Park EA
,
Lee W
,
et al. Incremental image noise reduction in coronary CT angiography using a deep learning-based technique with iterative reconstruction[J].?span style="font-family: "Times New Roman";">Korean J Radiol,2020,21(10):1165-1177.
[11
]Lossau T
,
Nickisch H
,
Wissel T
,
et al. Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks[J].?/span>Med Image Anal,2019,52:68-79.
[12
]Jung S
,
Lee S
,
Jeon B
,
et al. Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography[J]. IEEE Access
,
2020
,
8
:
81849-81863.
[13
]Xiao C
,
Li Y
,
Jiang Y. Heart coronary artery segmentation and disease risk warning based on a deep learning algorithm[J]. IEEE Access
,
2020
,
8
:
140108-140121.
[14
]Jun Guo B
,
He X
,
Lei Y
,
et al. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation[J].?/span>Med Phys,2020,47(4):1775-1785.
[15
]?span style="font-family: "Times New Roman";">He X,Guo B J,Lei Y,et al. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography[J].?/span>Phys Med Biol,2020,65(9):095012.
[16
]?span style="font-family: "Times New Roman";">Commandeur F,Goeller M,Betancur J,et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J].?/span>IEEE Trans Med Imaging,2018,37(8):1835-1846.
[17
]
李宸
,
徐少华
,
陆丽洁
,
等
.?span style="font-family: 宋体;">基于冠状动脉CT血管成像的无创血流储备分数的研究进展[J].?span style="font-family: 宋体;">心血管病学进展,2021,42(5):445-448.
[18
]Wang ZQ
,
Zhou YJ
,
Zhao YX
,
et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J].?/span>J Geriatr Cardiol,2019,16(1):42-48.
[19
]Kumamaru KK
,
Fujimoto S
,
Otsuka Y
,
et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography[J].?/span>Eur Heart J Cardiovasc Imaging,2020,21(4):437-445.
[20
]Zreik M
,
van Hamersvelt RW
,
Khalili N
,
et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography[J].?span style="font-family: "Times New Roman";">IEEE Trans Med Imaging,2020,39(5):1545-1557.
[21
]Hecht HS.?span style="font-family: "Times New Roman";">Coronary artery calcium scanning:past,present,and future[J].?/span>JACC Cardiovasc Imaging,2015,8(5):579-596.
[22
]van den Oever LB
,
Cornelissen L
,
Vonder M
,
et al. Deep learning for automated exclusion of cardiac CT examinations negative for coronary artery calcium[J]. Eur J Radiol
,
2020
,
129
:
109114.
[23
]Lessmann N
,
van Ginneken B
,
Zreik M
,
et al. Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions[J].?/span>IEEE Trans Med Imaging,2018,37(2):615-625.
[24
]Zhang N
,
Yang G
,
Zhang W
,
et al. Fully automatic framework for comprehensive coronary artery calcium scores analysis on non-contrast cardiac-gated CT scan
:
total and vessel-specific quantifications[J].?/span>Eur J Radiol,2021,134:109420.
[25
]van Velzen SGM
,
Lessmann N
,
Velthuis BK
,
et al. Deep learning for automatic calcium scoring in CT
:
validation using multiple cardiac CT and chest CT protocols[J]. Radiology
,
2020
,
295(1)
:
66-79.
[26
]
Tan LK
,
McLaughlin RA
,
Lim E
,
et al. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression[J]. J Magn Reson Imaging
,
2018
,
48(1)
:
140-152.
[27
]
Hosseini Hosseini?span style="font-family: "Times New Roman";">SA,Moeller S,Weing?tner S,et al.?/span>Accelerated coronary MRI using 3D SPIRiT-RAKI with sparsity regularization[J].?span style="font-family: "Times New Roman";">Proc IEEE Int Symp Biomed Imaging,2019,2019:1692-1695.
[28
]Scannell CM
,
Veta M
,
Villa ADM
,
et al.?span style="font-family: "Times New Roman";">Deep-learning-based preprocessing for quantitative myocardial perfusion MRI[J].?/span>J Magn Reson Imaging,2020,51(6):1689-1696.
[29
]Zhang N
,
Yang G
,
Gao Z
,
et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI[J]. Radiology
,
2019
,
291(3)
:
606-617.
[30
]Shibutani T
,
Nakajima K
,
Wakabayashi H
,
et al. Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT[J].?/span>Ann Nucl Med,2019,33(2):86-92.
[31
]
Kaplan Berkaya S
,
Ak Sivrikoz I
,
Gunal S
. Classification models for SPECT myocardial perfusion imaging[J].?/span>Comput Biol Med,2020,123:103893.
[32
]Betancur J
,
Commandeur F
,
Motlagh M
,
et al.?/span>Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J].?/span>JACC Cardiovasc Imaging,2018,11(11):1654-1663.
[33
]Betancur J
,
Hu LH
,
Commandeur F
,
et al.?/span>Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study[J].?/span>J Nucl Med,2019,60(5):664-670.
[34
]
Otaki Y
,
Singh A
,
Kavanagh P
,
et al. Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease[J].?span style="font-family: "Times New Roman";">JACC Cardiovasc Imaging,2021,S1936-878X(21)00438-1.
[35
]
Liu H
,
Wu J
,
Miller EJ
,
et al. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning[J]. Eur J Nucl Med Mol Imaging
,
2021
,
48(9):2793-2800.
[36
]Gessert N
,
Lutz M
,
Heyder M
,
et al.?/span>Automatic plaque detection in IVOCT pullbacks using convolutional neural networks[J].?/span>IEEE Trans Med Imaging,2019,38(2):426-434.
[37
]Gharaibeh Y
,
Prabhu DS
,
Kolluru C
,
et al. Coronary calcification segmentation in intravascular OCT images using deep learning
:
application to calcification scoring[J].?/span>J Med Imaging (Bellingham),2019,6(4):045002.
[38]Liu X,Du J,Yang J,et al. Coronary?/span>artery?/span>fibrous?/span>plaque?/span>detection?/span>based on?/span>multi-scale?/span>convolutional?/span>neural?/span>networks[J].?/span>J Sign Process Syst,2020,92(3):325-333.
[39
]Kusunose K
,
Abe T
,
Haga A
,
et al.?/span>A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images[J].?span style="font-family: "Times New Roman";">JACC Cardiovasc Imaging
,
2020
,
13(2 Pt 1):374-381
.
[40
]?span style="font-family: "Times New Roman";">Ouyang D,He B,Ghorbani A,et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature,2020,580(7802):252-256.
[41]Huang MS,Wang CS,Chiang JH,et al.?span style="font-family: "Times New Roman";">Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography[J].?span style="font-family: "Times New Roman";">Circulation,2020,142(16):1510-1520.