[1]赵霄潇 颜红兵.三甲胺-N-氧化物在心血管相关疾病发病机制中的研究进展[J].心血管病学进展,2020,(11):1123-1125.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 Cardiovascular Related Diseases.Research Progress of Trimethylamine-N-oxide in Pathogenesis of[J].Advances in Cardiovascular Diseases,2020,(11):1123-1125.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
点击复制

三甲胺-N-氧化物在心血管相关疾病发病机制中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年11期
页码:
1123-1125
栏目:
综述
出版日期:
2020-11-25

文章信息/Info

Title:
Research Progress of Trimethylamine-N-oxide in Pathogenesis of
文章编号:
202003025
作者:
赵霄潇1 颜红兵 2
颜红兵 2 (1. 北京协和医学院 中国医学科学院阜外心血管病医院,北京 100037;2. 中国医学科学院阜外心血管病医院 中国医学科学院阜外医院深圳医院,北京 100037)
Author(s):
Cardiovascular Related Diseases
ZHAO Xiaoxiao1YAN Hongbing 2 (1. Fuwai Cardiovascular Hospital of Chinese Academy of Medical Sciences Peking Union Medical College,Beijing 100037, China; 2.Fuwai Cardiovascular Hospital of Chinese Academy of Medical Sciences, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, Beijing 100037, China)
关键词:
心血管疾病三甲胺-N-氧化物治疗策略
Keywords:
Cardiovascular diseaseTrimethylamine-N-oxideTreatment strategy
DOI:
10.16806/j.cnki.issn.1004-3934.2020.11.000
摘要:
肠道菌群代谢产物三甲胺-N-氧化物作为新型的心血管疾病的生物标志物,与急性冠脉综合征、动脉硬化、高血压和心力衰竭等心血管事件密切相关。目前临床及基础研究正在探索降低三甲胺-N-氧化物水平的治疗策略,包括使用广谱抗生素和靶向分子药物,合理改善饮食结构以促进肠道微生长等。现就三甲胺-N-氧化物在心血管相关疾病发病机制中的研究进展做一综述。
Abstract:
As a new cardiovascular marker, i ntestinal microflora metabolite trimethylamine-N-oxide is closely related to the cardiovascular diseases such as acute coronary syndrome, arteriosclerosis, hypertension and heart failure. At present, clinical and basic research is exploring the treatment strategy to reduce the level of trimethylamine-N-oxide, including the use of broad-spectrum antibiotics and targeted molecular drugs, and reasonable improvement of diet structure to promote intestinal microgrowth. This article reviews the research progress of trimethylamine-N-oxide in the pathogenesis of cardiovascular related diseases

参考文献/References:

[1]Costea PI,Hildebrand F,Manimozhiyan A,et al. Enterotypes in the landscape of gut microbial community composition[J]. Nat Microbiol,2017,3(1):8-16.

[2]Senthong V,Li XS,Hudec T,et al. Plasma trimethylamine N-oxide,a gut microbe-generated phosphatidylcholine metabolite,is associated with atherosclerotic burden[J]. J Am Coll Cardiol,2016,67(22):2620-2628.

[3]Meyer KA,Benton TZ,Bennett BJ,et al. Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the Coronary Artery Risk Development in Young Adults Study(CARDIA) [J]. J Am Heart Assoc,2016,5(10): e003970.

[4]Zeng ZL,Chen JJ,Wu P,et al. OxLDL induces vascular endothelial cell pyroptosis through miR‐125a‐5p/TET2 pathway[J]. J Cell Physiol,2019,234(5):7475-7491.

[5]Mills EL,Kelly B,Logan A,et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell, 2016,167(2):457-470.

[6]Wu P ,Chen JN,Chen JJ,et al. Trimethylamine N‐oxide promotes apoE?/? mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway[J]. J Cell Physi ol,2020,Feb 3.DOI:10.1002/jcp.29518.Online ahead of print.

[7]Ma G,Pan B,Chen Y,et al.Trimethylamine N-oxide in atherogenesis:impairing endothelial selfrepair capacity and enhancing monocyte adhesion[J]. Biosci Rep,2017,37(2):BSR20160244.

[8]Tang WH,Wang Z,Levison BS,et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk[J]. N Engl J Med,2013,368(17):1575-1584.

[9]Schiattarella GG,Sannino A,Toscano E,et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker:a systematic review and doseresponse meta-analysis[J]. Eur Heart J,2017,38(39):2948-2956.

[10]Heianza Y,Ma W,Manson JE,et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death:a systematic review and meta-analysis of prospective studies[J]. J Am Heart Assoc,2017,6(7):e004947.

[11]Xu KY,Xia GH,Lu JQ,et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients[J]. Sci Rep,2017,7(1):1445.

[12]Zhu W,Wang Z,Tang WHW,et al. Gut microbe-generated trimethylamine-N-oxide from dietary choline is prothrombotic in subjects[J]. Circulation,2017,135(17):1671-1673.

[13]Li J,Zhao F,Wang Y,et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome,2017,5(1):14.

[14]Donato AJ,Morgan RG,Walker AE,et al. Cellular and molecular biology of aging endothelial cells[J]. J Mol Cell Cardiol,2015,89( Pt B):122-135.

[15]Gibson R,Lau CE,Loo RL,et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors:the International Study of Macro-/Micronutrients and Blood Pressure(INTERMAP)[J]. Am J Clin Nutr,2020,111(2):280-290.

[16]Ma G,Pan B,Chen Y,et al. Trimethylamine N-oxide in atherogenesis:impairing endothelial selfrepair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017,37(2):BSR20160244.

[17]Suzuki T,Heaney LM,Bhandari SS,et al. Trimethylamine N-oxide and prognosis in acute heart failure[J]. Heart,2016,102(11):841-848.

[18]Schuett K,Kleber ME,Scharnagl H,et al. Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction[J]. J Am Coll Cardiol,2017,70(25):3202-3204.

[19]Suzuki T,Yazaki Y,Voors AA,et al. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure(from BIOSTAT-CHF)[J]. Eur J Heart Fail,2018,21(7):877-886.

[20]Organ CL,Otsuka H,Bhushan S,et al. Choline diet and its gut microbe -derived metabolite,trimethylamine N-Oxide,exacerbate pressure overload-induced heart failure[J]. Circ Heart Fail,2016,9(1):e002314.

[21]Yazaki Y,Salzano A,Nelson PC,et al. Geographical location affects the levels and association of trimethylamine N-oxide with heart failure mortality in BIOSTAT-CHF:a post-hoc analysis[J]. Eur J Heart Fail,2019,21(10):1291-1294.

[22]Miao J,Ling AV,Manthena PV,et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis[J]. Nat Commun,2015,6:6498.

[23]Liu J,Lai L,Lin J,et al. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota[J]. Int J Biol Sci,2020,16(5):790-802.

[24]Liepinsh E,Vilskersts R,Loca D,et al. Mildronate,an inhibitor of carnitine biosynthesis,induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction[J]. J Cardiovasc Pharmacol,2006,48(6):314-319.

[25]Wang Z,Bergeron N,Levison BS,et al. Impact of chronic dietary red meat,white meat,or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women[J]. Eur Heart J,2019,40(7):583-594.

[26]KrügerR,Merz B,Rist MJ,et al. Associations of current diet with plasma and urine TMAO in the KarMeN study:direct and indirect contributions[J]. Mol Nutr Food Res,2017,61(11).DOI:10.1002/mnfr.201700363.

[27]Cheung W,Keski-Rahkonen P,Assi N,et al. A metabolomic study of biomarkers of meat and fish intake[J]. Am J Clin Nutr,2017,105(3):600-608.

[28]Li Q,Wu T,Liu R,et al. Soluble dietary fiber reduces trimethylamine metabolism via gut microbiota and co-regulates host AMPK pathways[J]. Mol Nutr Food Res,2017,61(12):1700473.

[29]Wu WK,Panyod S,Ho CT,et al. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota[J]. J Funct Foods,2015,15:408-417.

[30]Bresciani L,Dall’Asta M,Favari C,et al. An in vitro exploratory study of dietary strategies based on polyphenol-rich beverages,fruit juices and oils to control trimethylamine production in the colon[J]. Food Funct,2018,9(12):6470-6483.

[31]Wang Z,Roberts AB,Buffa JA,et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell,2015,163 (7):1585-1595.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(11):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(11):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(11):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(11):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(11):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(11):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

更新日期/Last Update: 2021-02-03