[1]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365-369.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
 Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):365-369.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
点击复制

哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2020年4期
页码:
365-369
栏目:
综述
出版日期:
2020-04-25

文章信息/Info

Title:
Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases
作者:

甘婷 李景东

(华中科技大学同济医学院附属协和医院心内科,湖北 武汉 430022)
Author(s):
Gan TingLI Jingdong
(Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China)
关键词:
哺乳动物雷帕霉素靶蛋白自噬心血管疾病
Keywords:
mTORAutophagyCardiovascular diseases
DOI:
10.16806/j.cnki.issn.1004-3934.2020.04.009
摘要:
自噬是生物进化过程中高度保守、依赖溶酶体的胞内降解途径。在心血管系统中,基础水平的自噬是维持心脏结构和功能稳态的一种机制;在应激状态下,自噬适度激活可保护心肌细胞免受应激损伤,而过度激活则会加重心肌损伤,从而参与多种心血管疾病的病理生理过程。生物体内存在多种自噬调控机制,其中哺乳动物雷帕霉素靶蛋白是自噬的关键负调控因子,研究其介导的自噬在心血管疾病中的作用机制,有助于探索临床预防和治疗心血管疾病的新靶点。
Abstract:
Autophagy is a highly conservative and lysosomal dependent intracellular degradation pathway in the process of biological evolution. In the cardiovascular system, autophagy at the basal level is a mechanism to maintain the homeostasis of heart structure and function. In the state of stress, moderate activation of autophagy can protect cardiomyocytes from stress injury, while excessive activation will aggravate myocardial injury. Thus, autophagy is involved in the pathological process of various cardiovascular diseases. There are a variety of autophagy regulatory mechanisms in organisms, among which mammalian target of rapamycin (mTOR) is a key negative regulator of autophagy. The study on the mechanism of autophagy mediated by mTOR in cardiovascular diseases can provide new strategies for clinical prevention and treatment of cardiovascular diseases.

参考文献/References:




[1] Mizushima N,Komatsu M. Autophagy:renovation of cells and tissues[J]. Cell,2011,147(4):728-741.

[2] Sciarretta S,Maejima Y,Zablocki D,et al. The role of autophagy in the heart[J]. Annu Rev Physiol,2018,80:1-26.

[3] Zhi X,Feng W,Rong Y,et al. Anatomy of autophagy:from the beginning to the end[J]. Cell Mol Life Sci,2018,75(5):815-831.

[4] Kim J,Kundu M,Viollet B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol,2011,13(2):132-141.

[5] Saxton RA,Sabatini DM. mTOR signaling in growth,metabolism,and disease[J]. Cell,2017,168(6):960-976.

[6] 刘杰,李景东. 哺乳动物雷帕霉素靶蛋白信号通路在心脏发育和重构中作用的研究进展[J]. 心血管病学进展,2018,39(06):911-915.

[7] Yang H,Jiang X,Li B,et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40[J]. Nature,2017,552(7685):368-373.

[8] Menon S,Dibble CC,Talbott G,et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome[J]. Cell,2014,156(4):771-785.

[9] Huang K,Fingar DC. Growing knowledge of the mTOR signaling network[J]. Semin Cell Dev Biol,2014,36:79-90.

[10] Wolfson RL,Sabatini DM. The dawn of the age of amino acid sensors for the mTORC1 pathway[J]. Cell Metab,2017,26(2):301-309.

[11] Hurley JH,Young LN. Mechanisms of autophagy initiation[J]. Annu Rev Biochem,2017,86:225-244.

[12] Antonioli M,Di Rienzo M,Piacentini M,et al. Emerging mechanisms in initiating and terminating autophagy[J]. Trends Biochem Sci,2017,42(1):28-41.

[13] Kim J,Kim YC,Fang C,et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy[J]. Cell,2013,152(1-2):290-303.

[14] Sciarretta S,Forte M,Frati G,et al. New insights into the role of mTOR signaling in the cardiovascular system[J]. Circ Res,2018,122(3):489-505.

[15] Lina TT,Luo T,Velayutham TS,et al. Ehrlichia activation of Wnt-PI3K-mTOR signaling inhibits autolysosome generation and autophagic destruction by the mononuclear phagocyte[J]. Infect Immun,2017,85(12).

[16] Wang X,Li L,Niu X,et al. mTOR enhances foam cell formation by suppressing the autophagy pathway[J]. DNA Cell Biol,2014,33(4):198-204.

[17] Zhai C,Cheng J,Mujahid H,et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque[J]. PLoS One,2014,9(3):e90563.

[18] Kurdi A,De Meyer GR,Martinet W. Potential therapeutic effects of mTOR inhibition in atherosclerosis[J]. Br J Clin Pharmacol,2016,82(5):1267-1279.

[19] Martinet W,de Loof H,de Meyer GR. mTOR inhibition:a promising strategy for stabilization of atherosclerotic plaques[J]. Atherosclerosis,2014,233(2):601-607.

[20] Matsui Y,Takagi H,Qu X,et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy[J]. Circ Res,2007,100(6):914-922.

[21] Ma S,Wang Y,Chen Y,et al. The role of the autophagy in myocardial ischemia/reperfusion injury[J]. Biochim Biophys Acta,2015,1852(2):271-276.

[22] Fu S,Chen L,Wu Y,et al. Gastrodin pretreatment alleviates myocardial ischemia/reperfusion injury through promoting autophagic flux[J]. Biochem Biophys Res Commun,2018,503(4):2421-2428.

[23] Li X,Hu X,Wang J,et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury[J]. Int J Mol Med,2018,42(4):1917-1924.

[24] Oyabu J,Yamaguchi O,Hikoso S,et al. Autophagy-mediated degradation is necessary for regression of cardiac hypertrophy during ventricular unloading[J]. Biochem Biophys Res Commun,2013,441(4):787-792.

[25] Li Z,Song Y,Liu L,et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ,2017,24(7):1205-1213.

[26] Weng LQ,Zhang WB,Ye Y,et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice[J]. Acta Pharmacol Sin,2014,35(8):1005-1014.

[27] Nakai A,Yamaguchi O,Takeda T,et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J]. Nat Med,2007,13(5):619-624.

[28] Guo R,Zhang Y,Turdi S,et al. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction:role of autophagy[J]. Biochim Biophys Acta,2013,1832(8):1136-1148.

[29] Yao Q,Ke ZQ,Guo S,et al. Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis[J]. J Mol Cell Cardiol,2018,124:26-34.

[30] Zhang L,Ding WY,Wang ZH,et al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis,reducing apoptosis and enhancing autophagy[J]. J Transl Med,2016,14(1):109.

[31] Shirakabe A,Ikeda Y,Sciarretta S,et al. Aging and autophagy in the heart[J]. Circ Res,2016,118(10):1563-1576.

[32] Ren J,Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases[J]. Trends Pharmacol Sci,2018,39(12):1064-1076.

相似文献/References:

[1]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
 JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(4):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(4):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]陈稳 叶强.自噬与心房颤动关系的研究进展[J].心血管病学进展,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 CHEN Wen,YE Qiang.The Relationship Between Autophagy and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(4):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[4]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(4):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5]于颖 龙聪.动脉粥样硬化中自噬与凋亡相互作用的研究进展[J].心血管病学进展,2022,(5):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
 YU Ying,LONG Cong.Crosstalk Between Autophagy and Apoptosis in Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(4):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
[6]杨伟 苗立坤 陈章荣.自噬与心肌重构研究进展[J].心血管病学进展,2022,(6):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
 YANG WeiIAO LikunCHEN Zhangrong.Autophagy and Myocardial Remodeling[J].Advances in Cardiovascular Diseases,2022,(4):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
[7]韩亚凡 李耀东.内质网应激与心房颤动的研究进展[J].心血管病学进展,2023,(6):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
 HAN Yafan,LI Yaodong.Critical Role of Endoplasmic Reticulum Stress in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(4):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
[8]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(4):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[9]庞自豪 贾青青 韩博文 张莉.药物调控哺乳动物雷帕霉素靶蛋白相关信号通路在缺血性心脏病中的研究进展[J].心血管病学进展,2024,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]
 PANG Zihao,JIA Qingqing,HAN Bowen,et al.Research Progress In Drug Regulated mTOR Related Signaling Pathway?span>In Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2024,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]
[10]王思博 经鹏 杨彤彤 赵迪 王连生.蛋白激酶mTOR调控心肌细胞衰老的机制研究进展[J].心血管病学进展,2024,(5):420.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.009]
 WANG Sibo,JING Peng,YANG Tongtong,et al.Mechanisms of Protein Kinase mTOR Regulating Cardiomyocyte Aging[J].Advances in Cardiovascular Diseases,2024,(4):420.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.009]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81873476)
通讯作者:李景东,E-mail:jingdong-li@mail.hust.edu.cn
收稿日期:2019-07-16
更新日期/Last Update: 2020-07-28