[1]庞自豪 贾青青 韩博文 张莉.药物调控哺乳动物雷帕霉素靶蛋白相关信号通路在缺血性心脏病中的研究进展[J].心血管病学进展,2024,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]
 PANG Zihao,JIA Qingqing,HAN Bowen,et al.Research Progress In Drug Regulated mTOR Related Signaling Pathway?span>In Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2024,(4):326.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.009]
点击复制

药物调控哺乳动物雷帕霉素靶蛋白相关信号通路在缺血性心脏病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年4期
页码:
326
栏目:
综述
出版日期:
2024-04-25

文章信息/Info

Title:
Research Progress In Drug Regulated mTOR Related Signaling Pathway?span>In Ischemic Heart Disease
作者:
庞自豪12 贾青青13 韩博文 12 张莉 2
(1.河北省人民医院心内科,河北 石家庄 050000;2.河北北方学院研究生院,河北 张家口 075000;3.河北医科大学,河北 石家庄 050000)
Author(s):
PANG Zihao12JIA Qingqing13HAN Bowen12ZHANG Li2
(1.Hebei General Hospital,Shijiazhuang 050000,Hebei,China;2.Hebei North University Graduate School,Zhangjiakou 075000,Hebei,China;3.Hebei Medical University,Shijiazhuang 050000,Hebei,China)
关键词:
哺乳动物雷帕霉素靶蛋白缺血性心脏病缺血再灌注缺血性心力衰竭心脏重构
Keywords:
Mammalian?target?of?rapamycinIschemic heart diseaseIschemia reperfusionIschemic heart failureCardiac remodeling
DOI:
10.16806/j.cnki.issn.1004-3934.2024.04.009
摘要:
缺血性心脏病是全球范围内导致死亡的主要病因之一。哺乳动物雷帕霉素靶蛋白是一种调控蛋白质合成、细胞生长、增殖和自噬的丝氨酸/苏氨酸蛋白激酶。近年来研究证实哺乳动物雷帕霉素靶蛋白在缺血性心脏病的发生及发展过程中起重要作用。现就哺乳动物雷帕霉素靶蛋白及其相关信号通路在缺血性心脏病药物研究进展方面进行综述,旨在为临床治疗及药物研发提供新的思路。
Abstract:
Ischemic heart disease is a prominent global cause of mortality. The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates protein synthesis,cell growth,proliferation,and autophagy. Recent research has substantiated the significant role played by mammalian target of rapamycin in the pathogenesis and progression of ischemic heart disease. This article provides an overview of the advancements made in understanding mammalian target of rapamycin and its associated signaling pathways in relation to ischemic heart disease,aiming to offer novel insights for clinical treatment strategies and drug development

参考文献/References:

[1] Khan MA,Hashim MJ,Mustafa H,et al. Global epidemiology of ischemic heart disease:results from the Global Burden of Disease Study[J]. Cureus,2020,12(7):e9349.

[2] Severino P,D’Amato A,Pucci M,et al. Ischemic heart disease pathophysiology paradigms overview:from plaque activation to microvascular dysfunction[J]. Int J Mol Sci,2020,21(21):8118.

[3] Liu GY,Sabatini DM. mTOR at the nexus of nutrition,growth,ageing and disease[J]. Nat Rev Mol Cell Biol,2020,21(4):183-203.

[4] Yang M,Lu Y,Piao W,et al. The translational regulation in mTOR pathway[J]. Biomolecules,2022,12(6):802.

[5] Vakrakou AG,Alexaki A,Brinia ME,et al. The mTOR signaling pathway in multiple sclerosis;from animal models to human data[J]. Int J Mol Sci,2022,23(15):8077.

[6] Mao B,Zhang Q,Ma L,et al. Overview of research into mTOR inhibitors[J]. Molecules,2022,27(16):5295.

[7] Glaviano A,Foo ASC,Lam HY,et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer [J]. Mol Cancer,2023,22(1):138.

[8] Xia C,Wang G,Chen L,et al. Trans-gnetin H isolated from the seeds of Paeonia species induces autophagy via inhibiting mTORC1 signalling through AMPK activation[J]. Cell Prolif,2023,56(3):e13360.

[9] Park SH,Choi WH,Lee MJ. Effects of mTORC1 inhibition on proteasome activity and levels[J]. BMB Rep,2022,55(4):161-165.

[10] Paquette M,El-Houjeiri L,C Zirden L,et al. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3[J]. Autophagy,2021,17(12):3957-3975.

[11] Scaiola A,Mangia F,Imseng S,et al. The 3.2-? resolution structure of human mTORC2[J]. Sci Adv,2020,6(45):eabc1251.

[12] Fu W,Hall MN. Regulation of mTORC2 Signaling[J]. Genes (Basel),2020,11(9):1045.

[13] Yu S,Zhang J. Effects of levosimendan preconditioning on left ventricular remodeling after myocardial reperfusion in acute myocardial infarction patients receiving percutaneous coronary intervention[J]. Heart Surg Forum,2022,25(1):E001-E007.

[14] He J,Liu D,Zhao L,et al. Myocardial ischemia/reperfusion injury:mechanisms of injury and implications for management (review)[J]. Exp Ther Med,2022,23(6):430.

[15] Qin GW,Lu P,Peng L,et al. Ginsenoside Rb1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury[J]. Am J Chin Med,2021,49(8):1913-1927.

[16] Panyod S,Wu WK,Chen PC,et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation[J]. NPJ Biofilms Microbiomes,2022,8(1):4.

[17] Liu M,Yang P,Fu D,et al. Allicin protects against myocardial I/R by accelerating angiogenesis via the miR-19a-3p/PI3K/AKT axis[J]. Aging (Albany NY),2021,13(19):22843-22855.

[18] Sabe SA,Harris DD,Broadwin M,et al. Sitagliptin therapy improves myocardial perfusion and arteriolar collateralization in chronically ischemic myocardium:a pilot study[J]. Physiol Rep,2023,11(11):e15744.

[19] Naryzhnaya NV,Maslov LN,Derkachev IA,et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion[J]. J Biomed Res,2023,37(4):230-254.

[20] Guo C,Huang Q,Wang Y,et al. Therapeutic application of natural products:NAD+ metabolism as potential target[J]. Phytomedicine,2023,114:154768.

[21] Li W,Zhu L,Ruan ZB,et al. Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy[J]. Eur Rev Med Pharmacol Sci,2019,23(12):5503-5511.

[22] Stone PH,Libby P,and Boden WE,Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management—The plaque hypothesis[J]. JAMA Cardiol,2023,8(2):192-201.

[23] Zhou H,You P,Liu H,et al. Artemisinin and procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux[J]. J Control Release,2022,341:828-843.

[24] Li Y,Lu R,Niu Z,et al. Suxiao jiuxin pill alleviates myocardial ischemia-reperfusion injury through the ALKBH5/GSK3β/mTOR pathway[J]. Chin Med,2023,18(1):31.

[25] Liu J,Liu C,Chen H,et al. Tongguan capsule for treating myocardial ischemia-reperfusion injury:integrating network pharmacology and mechanism study[J]. Pharm Biol,2023,61(1):437-448.

[26] Zhao J,Zhang J,Liu Q,et al. Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic-flux[J]. Biomed Pharmacother,2021,135:111205.

[27] Fang B,Liu F,Yu X,et al. Liraglutide alleviates myocardial ischemia-reperfusion injury in diabetic mice[J]. Mol Cell Endocrinol,2023,572:111954.

[28] Xu H,Cheng J,He F. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway[J]. J Physiol Biochem,2022,78(2):401-413.

[29] Cui ZH,Zhang XJ,Shang HQ,et al. Glutamine protects myocardial ischemiareperfusion injury in rats through the PI3K/Akt signaling pathway[J]. Eur Rev Med Pharmacol Sci,2020,24(1):444-451.

[30] Zheng D,Liu Z,Zhou Y,et al. Urolithin B,a gut microbiota metabolite,protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway[J]. Pharmacol Res,2020,153:104655.

[31] Cohn JN,Ferrari R,Sharpe N. Cardiac remodeling—Concepts and clinical implications:a consensus paper from an international forum on cardiac remodeling[J]. J Am Coll Cardiol,2000,35(3):569-582.

[32] Schirone L,Forte M,Palmerio S,et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling[J]. Oxid Med Cell Longev,2017,2017:3920195.

[33] Goldman S,Raya TE. Rat infarct model of myocardial infarction and heart failure[J]. J Card Fail,1995,1(2):169-177.

[34] Sciarretta S,Forte M,Frati G,et al. New insights into the role of mTOR signaling in the cardiovascular system[J]. Circ Res,2018,122(3):489-505.

[35] Wang S,Zhao Y,Song J,et al. Total flavonoids from Anchusa Italica Retz. Improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice[J]. J Ethnopharmacol,2020,257:112887.

[36] Sun TL,Li WQ,Tong XL,et al. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway[J]. Eur J Pharmacol,2021,891:173690.

[37] Buss SJ,Muenz S,Riffel JH,et al. Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction[J]. J Am Coll Cardiol,2009,54(25):2435-2446.

[38] Stahli BE,Klingenberg R,Heg D,et al. Mammalian target of rapamycin inhibition in patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol,2022,80(19):1802-1814.

[39] Cahill TJ,Choudhury RP,Riley PR. Heart regeneration and repair after myocardial infarction:translational opportunities for novel therapeutics[J]. Nat Rev Drug Discov,2017,16(10):699-717.

[40] Gao G,Chen W,Yan M,et al. Rapamycin regulates the balance between cardiomyocyte[J]. Int J Mol Med,2019,45(1):195-209.

[41] Zhang H,Zhao Y,Xia Z,et al. Metabolic profiles revealed anti-ischemia-reperfusion injury of Yangxinshi tablet in Rats[J]. J Ethnopharmacol,2018,214:124-133.

[42] Wu RM,Jiang B,Li H,et al. A network pharmacology approach to discover action mechanisms of Yangxinshi tablet for improving energy metabolism in chronic ischemic heart failure[J]. J Ethnopharmacol,2020,246:112227.

[43] Zheng J,Chen P,Zhong J,et al. HIF-1α in myocardial ischemia-reperfusion injury (Review)[J]. Mol Med Rep,2021,23(5):352.

[44] Solomon SD,McMurray JJV,Claggett B. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction[J]. N Engl J Med,2022,387(12):1089-1098.

[45] Wang K,Li Z,Sun Y,et al. Dapagliflozin improves cardiac function,remodeling,myocardial apoptosis,and inflammatory cytokines in mice with myocardial infarction[J]. J Cardiovasc Transl Res,2022,15(4):786-796.

[46] Kassiotis C,Ballal K,Wellnitz K,et al. Markers of autophagy are downregulated in failing human heart after mechanical unloading[J]. Circulation,2009,120(11 Suppl):S191-S197.

[47] Ma H,Ma Y. Dapagliflozin inhibits ventricular remodeling in heart failure rats by activating autophagy through AMPK/mTOR pathway[J]. Comput Math Methods Med,2022,2022:6260202.

相似文献/References:

[1]宋林声,综述,陆地,等.低剂量多巴酚丁胺负荷磁共振成像在缺血性心脏病中的应用研究[J].心血管病学进展,2016,(3):285.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.018]
 SONG Linsheng,LU Di,ZHAO Xinxiang.Low-dose Dobutamine Stress MRI Myocardial Perfusion and Assessment of Myocardial Viability[J].Advances in Cardiovascular Diseases,2016,(4):285.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.018]
[2]翟恒博,综述,刘俊,等.缺血性心脏病再认识[J].心血管病学进展,2016,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.018]
 ZHAI Hengbo,LIU Jun.Rethinking of Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2016,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.018]
[3]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
 Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
[4]施国荣 刘婷婷 田欣 祝自新 郑文荣 王宇峰 孙芳玲 王文.Eph/ephrin信号通路在缺血性心脏病中血管生成中的研究进展[J].心血管病学进展,2021,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.016]
 Shi Guorong,Liu Tingting,Tian Xin,et al.Research Progress of Eph/ephrin Signaling Pathway in Angiogenesis of Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2021,(4):158.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.016]
[5]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
 XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(4):293.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
[6]琚敏 汪蕾 宋雷 方纬.心脏交感神经显像的临床应用和研究进展[J].心血管病学进展,2023,(1):16.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.005]
 JU Min,WANG Lei,SONG Lei,et al.Clinical Application and Research Progress of Cardiac Sympathetic Imaging[J].Advances in Cardiovascular Diseases,2023,(4):16.[doi:10.16806/j.cnki.issn.1004-3934.2023.01.005]

更新日期/Last Update: 2024-05-31