[1]宋志平 杨永健.GPR 35在心血管疾病中的研究进展[J].心血管病学进展,2019,(9):1304-1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
 SONG Zhiping,YANG Yongjian.The Current Progress of GPR 35 in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1304-1307.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.031]
点击复制

GPR 35在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2019年9期
页码:
1304-1307
栏目:
综述
出版日期:
2019-12-25

文章信息/Info

Title:
The Current Progress of GPR 35 in Cardiovascular Disease
作者:
宋志平1 杨永健12
(1. 川北医学院,四川 南充 637000;2. 西部战区总医院,四川 成都 610083)
Author(s):
SONG Zhiping1 YANG Yongjian 12
North Sichuan Medical College, Nanchong 637000 ,Sichuan,China; 2. Department of Cardiology, General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China)
关键词:
GPR 35心血管疾病犬尿酸炎症
Keywords:
GPR 35 Cardiovascular disease Kynurenic acid Inflammation
DOI:
10.16806/j.cnki.issn.1004-3934.2019.09.031
摘要:
G蛋白偶联受体35(G protein coupled receptor 35,GPR 35)是一种孤儿受体,现有研究表明其参与多种疾病的发生发展,同时作为潜在的治疗靶点引起了研究者广泛的兴趣。基因组学研究发现GPR 35与炎症性肠病、2型糖尿病和冠状动脉疾病等密切相关。最近的功能学研究发现GPR 35介导缺氧、炎症等多种病理过程,并在高血压、冠心病、心力衰竭发病机制中起着重要作用。现总结GPR 35在心血管相关疾病中的研究进展,并讨论其作为新兴治疗靶标的潜在应用价值。
Abstract:
G protein-coupled receptor 35 (GPR 35), an orphan receptor, has attracted wide interest as a potential therapeutic target for kinds of diseases. Genomics studies have linked GPR 35 to inflammatory bowel disease, type 2 diabetes and coronary artery disease. Recent functional studies have founded that GPR 35 is associated with hypoxia, inflammation and other pathological processes, revealing its crucial role in hypertension, coronary heart disease and heart failure. In this review, we summarize the progress of GPR 35 in cardiovascular diseases and discuss its potential application as an emerging therapeutic target.

参考文献/References:

[1] 胡盛寿,高润霖,刘力生,等. 《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(3):209-220.

[2] Shimada I, Ueda T, Kofuku Y, et al. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures[J]. Nat Rev Drug Discov,2019,18(1):59-82.

[3] Guo J, Williams DJ, Puhl HL 3rd, et al. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons[J]. J Pharmacol Exp Ther ,2008,324(1):342-351.

[4] Divorty N,Mackenzie AE,Nicklin SA,et al.G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease[J]. Front Pharmacol ,2015,6:41.

[5] Rojewska E, Piotrowska A, Jurga A, et al. Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model[J]. Eur J Pharmacol ,2018,839:21-32.

[6] Resta F, Masi A, Sili M, et al. Kynurenic acid and zaprinast induce analgesia by modulating HCN channels through GPR35 activation[J]. Neuropharmacology,2016,108:136-143.

[7] Guo YJ, Zhou YJ, Yang XL, et al. The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer[J]. Biochem Biophys Res Commun ,2017,493(3): 1159-1167.

[8] Park SJ, Lee SJ, Nam SY, et al. GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17[J]. Br J Pharmacol,2018,175(1): 154-161.

[9] Wang J, Simonavicius N, Wu X, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35[J]. J Biol Chem ,2006,281(31): 22021-22028.

[10] Barth MC, Ahluwalia N, Anderson TJ, et al. Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions[J]. J Biol Chem ,2009,284(29):19189-19195.

[11] Zheng X, Hu M, Zang X, et al. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress[J]. Brain Behav Immun ,2019,79:244-255.

[12] Wirthgen E, Otten W, Tuchscherer M, et al. Effects of 1- methyltryptophan on immune responses and the kynurenine pathway after lipopolysaccharide challenge in pigs[J]. Int J Mol Sci ,2018,19(10).pii: E3009. doi: 10.3390/ijms19103009.

[13] Salimi Elizei S, Poormasjedi-Meibod MS, Wang X, et al. Kynurenic acid downregulates IL-17/1L-23 axis in vitro[J]. Mol Cell Biochem ,2017,431(1-2):55-65.

[14] Wang G, Cao K, Liu K, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells[J]. Cell Death Differ ,2018,25(7):1209-1223.

[15] Song P, Ramprasath T, Wang H, et al. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases[J]. Cell Mol Life Sci ,2017,74(16): 2899-2916.

[16] Shrimpton AE, Braddock BR, Thomson LL, et al. Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype[J]. Clin Genet ,2004,66(6):537-544.

[17] Oxenkrug GF. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes[J]. Mol Neurobiol,2015,52(2):805-810.

[18] Agudelo LZ, Ferreira D, Cervenka I, et al. Kynurenic acid and gpr35 regulate adipose tissue energy homeostasis and inflammation[J]. Cell Metab,2018,27(2):378-392.e5.

[19] 张文博,黄星荷,李静.高血压的流行趋势和治疗进展[J].心血管病学进展,2019,40(03):331-337.

[20] Zakrocka I, Turski WA, Kocki T. Angiotensin-converting enzyme inhibitors modulate kynurenic acid production in rat brain cortex in vitro[J]. Eur J Pharmacol ,2016,789:308-312.

[21] Yang Y, Fu A, Wu X, et al. GPR35 is a target of the loop diuretic drugs bumetanide and furosemide[J]. Pharmacology,2012,89(1-2):13-17.

[22] Ronkainen VP, Tuomainen T, Huusko J, et al. Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling[J]. Cardiovasc Res ,2014,101(1):69-77.

[23] Divorty N, Milligan G, Graham D, et al. The orphan receptor GPR35 contributes to angiotensin II- induced hypertension and cardiac dysfunction in mice[J]. Am J Hypertens,2018,31(9):1049-1058.

[24] McCallum JE, Mackenzie AE, Divorty N, et al. G- protein-coupled receptor 35 mediates human saphenous vein vascular smooth muscle cell migration and endothelial cell proliferation[J]. J Vasc Res ,2015,52(6): 383-395.

[25] Maravillas-Montero JL, Burkhardt AM, Hevezi PA, et al. Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17[J]. J Immunol,2015,194(1):29-33.

[26] Hernández-Ruiz M, Zlotnik A. Mucosal chemokines[J]. J Interferon Cytokine Res,2017,37(2):62-70.

[27] Oka S, Ota R, Shima M, et al. GPR35 is a novel lysophosphatidic acid receptor[J]. Biochem Biophys Res Commun ,2010,395(2):232-237.

[28] Abdel-Latif A, Heron PM, Morris AJ, et al. Lysophospholipids in coronary artery and chronic ischemic heart disease[J]. Curr Opin Lipidol ,2015,26(5):432-437.

[29] 贺磊,杨怡,田玥,等.抑制G蛋白偶联受体35对小鼠缺血性心肌损伤的保护作用[J].解放军医学杂志,2018,64(2):101-106.

[30] Min KD, Asakura M, Liao Y, et al. Identification of genes related to heart failure using global gene expression profiling of human failing myocardium[J]. Biochem Biophys Res Commun ,2010,393(1):55-60.

[31] Milligan G. Orthologue selectivity and ligand bias: translating the pharmacology of GPR35[J]. Trends Pharmacol Sci ,2011,32(5):317-325.

相似文献/References:

[1]白春兰,张军.正五聚蛋白-3:新型心血管病炎性标志物[J].心血管病学进展,2016,(1):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
 BAI Chunlan,ZHANG Jun.Pentraxin-3: A Novel Inflammation Biomarker for Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2016,(9):87.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.023]
[2]任茂佳,贺文帅,张琪,等.围绝经期对心血管疾病相关危险因素的影响[J].心血管病学进展,2019,(6):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
 REN Maojia,HE Wenshuai,ZHANG Qi,et al.Effects of Perimenopause on Cardiovascular Risk Factors[J].Advances in Cardiovascular Diseases,2019,(9):911.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.018]
[3]尹琳 黄从新.JP2蛋白和心血管疾病的研究进展[J].心血管病学进展,2019,(7):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
 YIN Lin HUANG Congxin.Research Progress of JP2 Protein and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1004.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.010]
[4]朱峰 汪汉 蔡琳.抗体与心血管疾病[J].心血管病学进展,2019,(7):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
 ZHU FengWANG HanCAI Lin.Antibodies and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1007.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.011]
[5]邱明仙 王正龙 许官学.心肌肌球蛋白结合蛋白-C磷酸化与心血管疾病关系的研究进展[J].心血管病学进展,2019,(7):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
 QIU MingxianWANG ZhenglongXU Guanxue.Research Progress of the Relationship Between Cardiac Myosin Binding Protein-C and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1015.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.013]
[6]姬楠楠 杨晓静 谢勇.单核细胞/高密度脂蛋白比值与心血管疾病的研究进展[J].心血管病学进展,2019,(7):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
 JI Nannan YANG Xiaojing XIE Yong.Monocyte/High-density Lipoprotein Ratio and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2019,(9):1019.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.014]
[7]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[8]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(9):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[9]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(9):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[10]韦莹 刘书旺 李蕾 崔鸣.生长分化因子-15在心房颤动中的研究进展[J].心血管病学进展,2019,(8):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]
 WEI Ying,LIU Shuwang,LI Lei,et al.Growth Differentiation Factor-15 in Development of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(9):1073.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.001]

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(81670419,81873477)
更新日期/Last Update: 2020-02-06