参考文献/References:
[1].Zhang PY,Xu X,Li XC.Cardiovascular diseases: oxidative damage and antioxidant protection [J].Eur Rev Med Pharmacol,2014,18(20):3091-3096.
[2].Gistera A,Hansson GK.The immunology of atherosclerosis[J].Nat Rev Nephrol, 2017, 13(6):368-380.
[3].Moriya J.Critical roles of inflammation in atherosclerosis[J].J Cardiol, 2019, 73(1):22-27.
[4].Martens CR, Bansal SS,Accornero F. Cardiovascular inflammation: RNA takes the lead[J].J Mol Cell Cardiol,2019,129:247-256.
[5].Ojha R,Nandani R,Pandey RK,et al.Emerging role of circulating microRNA in the diagnosis of human infectious diseases[J].Cellular Physology,2019,234(2): 1030-1043.
[6].Fan R,Xiao C,Wan X,et al.Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics[J].RNA Biol,2019,16(6):707-708.
[7].Mohr AM,Mott JL.Overview of microRNA biology[J].Semin Liver Dis,2015, 35(1):3-11.
[8].Mohr AM,Mott JL.Overview of microRNA biology[J].Semin Liver Dis,2015, 35(1):3-11.(与7重复!!!)
[9].Paiva S,Agbulut O.MiRroring the Multiple Potentials of MicroRNAs in Acute Myocardial Infarction[J].Front Cardiovasc Med,2017,4:73.
[10].Lin J,Ma L,Zhang D,et al.Tumour biomarkers-Tracing the molecular function and clinical implication[J].Cell Proliferation,2019,52(3):e12589.
[11].Zhang X,Ang Q,Wang W.Application research on ultrasonic blood flow velocity measurement [J].Zhongguo Yi Liao Qi Xie Za Zhi,2014,38(1):53-56.
[12].Orso E,Schmitz G.Lipoprotein(a) and its role in inflammation,atherosclerosis and malignancies[J].Clin Res Cardiol Suppl,2017,12(Suppl 1): 31-37.
[13].Xu W,Chen B,Guo L,et al.High-sensitivity CRP: possible link between job stress and atherosclerosis[J].Am J Ind Med,2015,58(7): 773-779.
[14].Morrison M,van der Heijden R,Heeringa P, et al.Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFkappaB in vivo[J]. Atherosclerosis,2014,233(1):149-156.
[15].Yoshida M,Higashi K,Kobayashi E,et al.Correlation between images of silent brain infarction, carotid atherosclerosis and white matter hyperintensity, and plasma levels of acrolein, IL-6 and CRP[J].Atherosclerosis,2010,211(2):475-479.
[16].Liu J,Yang B,Ai J.Advance in research of microRNA in Caenorhabditis elegans[J].J Cell Biochem,2013,114(5):994-1000.
[17].Koroleva IA,Nazarenko MS,Kucher AN.Role of microRNA in Development of Instability of Atherosclerotic Plaques[J].Biochemistry (Mosc),2017,82(11): 1380-1390.
[18].Hung J,Miscianinov V,Sluimer JC,et al.Targeting Non-coding RNA in Vascular Biology and Disease[J]. Front Physiol,2018,9:1655.
[19].Raitoharju E,Lyytikainen LP,Levula M,et al.miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study[J].Atherosclerosis,2011,219(1): 211-217.
[20].Han H,Qu G,Han C,et al.MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort[J].Exp Mol Med,2015,47:e138.
[21].Wang S,Aurora AB,Johnson BA,et al.The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J].Dev Cell,2008,15(2): 261-271.
[22].Suarez Y,Wang C,Manes TD,et al.Cutting edge:TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation[J]. J Immunol,2010,184(1):21-25.
[23].Tang Y,Zhang YC,Chen Y, et al.The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease [J].Sci Rep,2015,5:15132.
[24].Elia L,Quintavalle M,Zhang J,et al.The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease[J].Cell Death Differ,2009,16(12):1590-1598.
[25].Lovren F,Pan Y,Quan A,et al.MicroRNA-145 targeted therapy reduces atherosclerosis[J]. Circulation,2012,126(11 Suppl 1):S81-90.
[26].Torella D,Iaconetti C,Catalucci D,et al.MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J].Circ Res,2011,109(8): 880-893.
[27].Cipollone F,Felicioni L,Sarzani R,et al.A unique microRNA signature associated with plaque instability in humans[J].Stroke,2011,42(9):2556-2563.
[28].Wang J,Zhang C,Li C,et al.MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway[J].Cell Mol Med,2019,23(5):3696-3710.
[29].Wei Y,Zhu M,Schober A.Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer[J].Int J Mol Sci,2018, 19(6):1756
[30].Yang S,Li J,Chen Y,et al.MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-kappaB pathway[J]. Biochim Biophys Acta Mol Basis Dis,2019, 1865(7): 1772-1781.
[31].Yang S,Ye ZM,Chen S, et al.MicroRNA-23a-5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages [J]. J Mol Cell Cardiol,2018,123:139-149.
[32].Chen W,Li X,Wang J,et al.miR-378a Modulates Macrophages Phagocytosis and Differentiation through targeting CD47-SIRPalpha axis in Atherosclerosis[J]. Scand J Immunol,2019,90(1):e12766.
[33].Zhi H,Yuan N,Wu JP,et al.MicroRNA-21 attenuates BDE-209-induced lipid accumulation in THP-1 macrophages by downregulating Toll-like receptor 4 expression[J].Food Chem Toxicol,2019,125:71-77.
[34].Tan L,Liu L,Jiang Z,et al.Inhibition of microRNA-17-5p reduces the inflammation and lipid accumulation, and up-regulates ATP-binding cassette transporterA1 in atherosclerosis[J].J Pharmacol Sci,2019,139(4):280-288.
[35].Horie T,Baba O,Kuwabara Y,et al.MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice[J].J Am Heart Assoc,2012, 1(6):e003376.
[36].Huang RS, Hu GQ, Lin B, et al. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages [J].J Investig Med,2010, 58(8): 961-967.
[37].Zhang Y,Zhang L,Wang Y,et al.MicroRNAs or Long Noncoding RNAs in Diagnosis and Prognosis of Coronary Artery Disease[J]. Aging Dis,2019,10(2): 353-366.
[38].Wang Z,Zhang J,Zhang S,et al.MiR30e and miR92a are related to atherosclerosis by targeting ABCA1[J].Mol Med Rep,2019,19(4):3298-3304.
[39].Li L,Masica D,Ishida M,et al.Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis[J].Hepatology,2014, 60(3): 896-907.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(7):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[3]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(7):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[4]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(7):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[5]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(7):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[6]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[7]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(7):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[8]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(7):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[9]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(7):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[10]林春尧 刘晓辉.IL-33/ST2在冠心病中的研究进展[J].心血管病学进展,2020,(2):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]
LIN Chunyao LIU Xiaohui.IL-33/ST2 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2020,(7):128.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.007]