[1]张瑶 王鑫 王鹏 李瑾.心外膜脂肪组织在心力衰竭中的研究进展[J].心血管病学进展,2023,(11):1010.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.012]
 ZHANG YaoWANG XinWANG PengLI Jin.Epicardial Adipose Tissue in Heart Failure[J].Advances in Cardiovascular Diseases,2023,(11):1010.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.012]
点击复制

心外膜脂肪组织在心力衰竭中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1010
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Epicardial Adipose Tissue in Heart Failure
作者:
张瑶1 王鑫1 王鹏1 李瑾2
(1.山西医科大学第二临床医学院,山西 太原030000; 2 .山西医科大学第二医院,山西 太原030000)
Author(s):
ZHANG Yao1WANG Xin1WANG Peng1LI Jin2
?1.The Second Clinical Medical College of Shanxi Medical University,Taiyuan 030000 ,Shanxi,China2.The Second Hospital of Shanxi Medical University,Taiyuan 030000 ,Shanxi,China)
关键词:
心外膜脂肪组织心力衰竭心血管疾病
Keywords:
Epicardial Adipose Tissue Heart Failure Cardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.012
摘要:
心外膜脂肪组织(EAT)是位于心肌表面的内脏脂肪库,有研究表明EAT可通过多种机制介导心力衰竭的发生和发展。现主要概述EAT的解剖和生理功能、在心力衰竭中的作用和发病机制,以及将EAT作为治疗靶点的治疗方法。
Abstract:
Epicardial adipose tissue is a visceral fat depot located on the surface of myocardium. Studies have shown that EAT can mediate the occurrence and development of heart failure through a variety of mechanisms. This article mainly summarizes the anatomy and physiological functions of EAT ,its role and pathogenesis in heart failure,and the relevant treatment methods that use EAT as a therapeutic target

参考文献/References:

[1] Rabkin SW. Epicardial fat:properties,function and relationship to obesity[J]. Obes Rev,2007,8(3):253-261.

[2] Cherian S,Lopaschuk GD,Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease[J]. Am J Physiol Endocrinol Metab,2012,303(8):E937-E949.

[3] van der Vusse GJ,Glatz JF,Stam HC,et al. Fatty acid homeostasis in the normoxic and ischemic heart[J]. Physiol Rev,1992,72(4):881-940.

[4] Iacobellis G,Corradi D,Sharma AM. Epicardial adipose tissue:anatomic,biomolecular and clinical relationships with the heart[J]. Nat Clin Pract Cardiovasc Med,2005,2(10):536-543.

[5] Sacks HS,Fain JN. Human epicardial fat:what is new and what is missing?[J]. Clin Exp Pharmacol Physiol,2011,38(12):879-887.

[6] Barseghian A,Gawande D,Bajaj M. Adiponectin and vulnerable atherosclerotic plaques[J]. J Am Coll Cardiol,2011,57(7):761-770.

[7] Antonopoulos AS,Margaritis M,Verheule S,et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling[J]. Circ Res,2016,118(5):842-855.

[8] Iacobellis G,Pistilli D,Gucciardo M,et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease[J]. Cytokine,2005,29(6):251-255.

[9] Doukbi E,Soghomonian A,Sengenès C,et al. Browning epicardial adipose tissue:friend or foe?[J]. Cells,2022,11(6):991.

[10] Monti CB,Codari M,de Cecco CN,et al. Novel imaging biomarkers:epicardial adipose tissue evaluation[J]. Br J Radiol,2020,93(1113):20190770.

[11] Antonopoulos AS,Sanna F,Sabharwal N,et al. Detecting human coronary inflammation by imaging perivascular fat[J]. Sci Transl Med,2017,9(398):eaal2658.

[12] van Woerden G,Gorter TM,Westenbrink BD,et al. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction[J]. Eur J Heart Fail,2018,20(11):1559-1566.

[13] Iacobellis G,Zaki MC,Garcia D,et al. Epicardial fat in atrial fibrillation and heart failure[J]. Horm Metab Res,2014,46(8):587-590.

[14] Nyawo TA,Dludla PV,Mazibuko-Mbeje SE,et al. A systematic review exploring the significance of measuring epicardial fat thickness in correlation to B-type natriuretic peptide levels as prognostic and diagnostic markers in patients with or at risk of heart failure[J]. Heart Fail Rev,2022,27(2):665-675.

[15] van Woerden G,van Veldhuisen DJ,Gorter TM,et al. Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging in patients with heart failure with mid-range and preserved ejection fraction[J]. Clin Cardiol,2021,44(7):987-993.

[16] Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot[J]. Nat Rev Endocrinol,2015,11(6):363-371.

[17] Song Y,Song F,Wu C,et al. The roles of epicardial adipose tissue in heart failure[J]. Heart Fail Rev,2022,27(1):369-377.

[18] Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity[J]. World J Diabetes,2015,6(15):1296-1308.

[19] Kankaanpaa M,Lehto HR,Parkka JP,et al. Myocardial triglyceride content and epicardial fat mass in human obesity:relationship to left ventricular function and serum free fatty acid levels[J]. J Clin Endocrinol Metab,2006,91(11):4689-4695.

[20] Liang H,Zhang C,Ban T,et al. A novel reciprocal loop between microRNA-21 and TGFβRⅢ is involved in cardiac fibrosis[J]. Int J Biochem Cell Biol,2012,44(12):2152-2160.

[21] Long B,Gan TY,Zhang RC,et al. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase[J]. Mol Cells,2017,40(8):542-549.

[22] Christensen RH,Wedell-Neergaard AS,Lehrskov LL,et al. Effect of aerobic and resistance exercise on cardiac adipose tissues:secondary analyses from a randomized clinical trial[J]. JAMA Cardiol,2019,4(8):778-787.

[23] Gepner Y,Shelef I,Schwarzfuchs D,et al. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial[J]. Circulation ,2018,137(11):1143-1157.

[24] Iacobellis G,Singh N,Wharton S,et al. Substantial changes in epicardial fat thickness after weight loss in severely obese subjects[J]. Obesity (Silver Spring),2008,16(7):1693-1697.

[25] Graziani F,Leone AM,Cialdella P,et al. Effects of bariatric surgery on cardiac remodeling:clinical and pathophysiologic implications[J]. Int J Cardiol,2013,168(4):4277-4279.

[26] Alexopoulos N,Melek BH,Arepalli CD,et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women:a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning)[J]. J Am Coll Cardiol,2013,61(19):1956-1961.

[27] Raggi P,Gadiyaram V,Zhang C,et al. Statins reduce epicardial adipose tissue attenuation independent of lipid lowering:a potential pleiotropic effect[J]. J Am Heart Assoc,2019,8(12):e13104.

[28] Akahori H,Tsujino T,Naito Y,et al. Atorvastatin ameliorates cardiac fibrosis and improves left ventricular diastolic function in hypertensive diastolic heart failure model rats[J]. J Hypertens,2014,32(7):1534-1541.

[29] Ng A,Strudwick M,van der Geest RJ,et al. Impact of epicardial adipose tissue,left ventricular myocardial fat content,and interstitial fibrosis on myocardial contractile function[J]. Circ Cardiovasc Imaging,2018,11(8):e7372.

[30] Rivas-Galvez RE,Morales-Portano JD,Trujillo Cortes R,et al. Reduction of epicardial adipose tissue thickness with PCSK9 inhibitors.[J]. Eur Heart J,2020,41(supple 2):ehaa946.3008.

[31] Ziyrek M,Kahraman S,Ozdemir E,et al. Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients[J]. Rev Port Cardiol (Engl Ed),2019,38(6):419-423.

[32] Iacobellis G,Villasante Fricke AC. Effects of semaglutide versus dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity[J]. J Endocr Soc,2020,4(4):bvz42.

[33] Iacobellis G,Camarena V,Sant D W,et al. Human epicardial fat expresses glucagon-like peptide 1 and 2 receptors genes[J]. Horm Metab Res,2017,49(8):625-630.

[34] Dozio E,Vianello E,Malavazos AE,et al. Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation:a target to modulate cardiovascular risk?[J]. Int J Cardiol,2019,292:218-224.

[35] Iacobellis G,Gra-Menendez S. Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity[J]. Obesity (Silver Spring),2020,28(6):1068-1074.

[36] Diaz-Rodriguez E,Agra RM,Fernandez AL,et al. Effects of dapagliflozin on human epicardial adipose tissue:modulation of insulin resistance,inflammatory chemokine production,and differentiation ability[J]. Cardiovasc Res,2018,114(2):336-346.

[37] Ferrannini E,Mark M,Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial:a "thrifty substrate" hypothesis[J]. Diabetes Care,2016,39(7):1108-1114.

[38] Bouchi R,Terashima M,Sasahara Y,et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes:a pilot study[J]. Cardiovasc Diabetol,2017,16(1):32.

[39] Correale M,Lamacchia O,Ciccarelli M,et al. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients[J]. Heart Fail Rev,2023,28(3):733-744.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(11):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]罗秀林,综述,张烁,等.肾动脉去交感神经术治疗心力衰竭——希望还是炒作[J].心血管病学进展,2016,(3):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
 LUO Xiulin,ZHANG Shuo.Renal Sympathetic Denervation for Heart Failure—Hopes or Hypes[J].Advances in Cardiovascular Diseases,2016,(11):268.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.013]
[3]查凤艳,综述,覃数,等.心源性恶病质发病机制的研究进展[J].心血管病学进展,2016,(3):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
 ZHA Fengyan,QIN Shu.Advances in Pathogenesis of Cardiac Cachexia[J].Advances in Cardiovascular Diseases,2016,(11):282.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.017]
[4]李慧,综述,齐国先,等.老年射血分数保留的心功能不全研究进展[J].心血管病学进展,2016,(4):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
 LI Hui,QI Guoxian.Research Progress of Heart Failure with Preserved Ejection Fraction in Elderly People[J].Advances in Cardiovascular Diseases,2016,(11):354.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.007]
[5]郑涛,综述,凌智瑜,等.心外膜脂肪组织与心房颤动[J].心血管病学进展,2016,(4):372.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.012]
 ZHENG Tao,LING Zhiyu.Epicardial Adipose Tissue and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2016,(11):372.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.012]
[6]亢玉,综述,张庆,等.二尖瓣瓣叶在功能性二尖瓣反流发生机制中的角色[J].心血管病学进展,2016,(4):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
 KANG Yu,ZHANG Qing.Role of Mitral Leaflets in Pathogenesis of Functional Mitral Regurgitation[J].Advances in Cardiovascular Diseases,2016,(11):376.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.013]
[7]史秀莉,张庆,喻鹏铭.心力衰竭患者运动训练方式及其疗效的研究进展[J].心血管病学进展,2015,(5):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
 SHI Xiuli,ZHANG Qing,YU Pengming.Exercise Training Modalities and Their Treatment Effects on Patients with Heart Failure[J].Advances in Cardiovascular Diseases,2015,(11):535.[doi:10.3969/j.issn.1004-3934.2015.05.003]
[8]熊卓超,陈康玉,严激.无创血流动力学评价在心力衰竭中的应用进展[J].心血管病学进展,2019,(6):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
 XIONG Zhuochao,CHEN Kangyu,YAN Ji.Application Progress of Noninvasive Hemodynamic Evaluation in Heart Failure[J].Advances in Cardiovascular Diseases,2019,(11):923.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.021]
[9]高薇 陈伟.铁过载性心肌病[J].心血管病学进展,2019,(5):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
 GAO WeiCHEN Wei.Iron Overload Cardiomyopathy[J].Advances in Cardiovascular Diseases,2019,(11):680.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.006]
[10]何燕 刘育.C型利钠肽与心力衰竭[J].心血管病学进展,2019,(5):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]
 HE Yan,LIU Yu.C-type Natriuretic Peptide and Heart Failure[J].Advances in Cardiovascular Diseases,2019,(11):745.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.020]

更新日期/Last Update: 2023-12-13