[1]周强 曹勖 王睿.血管平滑肌细胞线粒体与腹主动脉瘤发生发展的研究进展[J].心血管病学进展,2024,(5):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
 ZHOU Qiang,CAO Xu,WANG Rui.Vascular Smooth Muscle Cell Mitochondria and Abdominal Aortic Aneurysm Formation and Development[J].Advances in Cardiovascular Diseases,2024,(5):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
点击复制

血管平滑肌细胞线粒体与腹主动脉瘤发生发展的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年5期
页码:
442
栏目:
综述
出版日期:
2024-05-25

文章信息/Info

Title:
Vascular Smooth Muscle Cell Mitochondria and Abdominal Aortic Aneurysm Formation and Development
作者:
周强 曹勖 王睿
(南京医科大学附属南京医院 南京市第一医院心胸外科,南京 江苏 210006)
Author(s):
ZHOU Qiang CAO Xu WANG Rui
(Department of Thoracic and Cardiovascular Surgery,Nanjing First Hospital,Nanjing Medical University/Nanjing First Hospital,Nanjing 210006,Jiangsu,China)
关键词:
腹主动脉瘤血管平滑肌细胞线粒体氧化应激线粒体DNA损伤
Keywords:
Abdominal aortic aneurysm Vascular smooth muscle cells Mitochondria Oxidative stress Mitochondrial DNA damage
DOI:
10.16806/j.cnki.issn.1004-3934.2024.05.014
摘要:
腹主动脉瘤(AAA)是以腹主动脉壁发生持续性扩张为主要特点的血管疾病,破裂后常导致严重后果。血管平滑肌细胞(VSMCs)是构成血管中膜的重要组成部分,负责调节血管的直径和血流,以维持正常的血液循环和血压。VSMCs线粒体作为VSMCs氧化代谢的中心,在能量产生和细胞代谢中发挥重要作用。近年来,越来越多的研究表明,VSMCs线粒体功能障碍与AAA的发生发展密切相关。现从VSMCs线粒体与氧化应激和炎症、线粒体DNA损伤、线粒体动力学异常和细胞代谢四个方面探讨VSMCs线粒体损伤在AAA发生发展中的研究进展,旨在为AAA未来的治疗和预防提供新的策略。
Abstract:
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by the continuous dilation of the abdominal aorta wall,and its rupture often leads to severe consequences. Vascular smooth muscle cells (VSMCs) are a crucial component of the vascular wall,responsible for regulating vessel diameter and blood flow to maintain normal blood circulation and pressure. The mitochondria of VSMCs serve as the center of cellular oxidative metabolism,playing a significant role in energy production and cell metabolism. In recent years,an increasing amount of research has shown a close association between mitochondrial dysfunction in VSMCs and the development of AAA. This article explores the research progress on VSMCs’ mitochondrial damage in the context of AAA development,focusing on four aspects:mitochondrial involvement in oxidative stress and inflammation,mitochondrial DNA damage,mitochondrial dynamics abnormalities,and cell metabolism. The aim is to provide new strategies for the future treatment and prevention of AAA

参考文献/References:

[1] Sawada H,Lu HS,Cassis LA,et al. Twenty years of studying AngⅡ (angiotensin Ⅱ)-induced abdominal aortic pathologies in mice:continuing questions and challenges to provide insight into the human disease[J]. Arterioscler Thromb Vasc Biol,2022,42(3):277-288.

[2] Haque K,Bhargava P. Abdominal aortic aneurysm[J]. Am Fam Physician,2022,106(2):165-172.

[3] Sprynger M,Willems M,van Damme H,et al. Screening program of abdominal aortic aneurysm[J]. Angiology,2019,70(5):407-413.

[4] 陈忠,杨耀国. 血管外科急症诊治中值得关注的几个问题[J]. 中国实用外科杂志,2020,40(12):1349-1351,1390.

[5] Tadayon N,Mozafar M,Zarrintan S. In-hospital outcomes of ruptured abdominal aortic aneurysms:a single center experience[J]. J Cardiovasc Thorac Res,2022,14(1):61-66.

[6] Zhuge Y,Zhang J,Qian F,et al. Role of smooth muscle cells in Cardiovascular Disease[J]. Int J Biol Sci,2020,16(14):2741-2751.

[7] Bock FJ,Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol,2020,21(2):85-100.

[8] Li Y,Jiao Y,Li W,et al. Management of isolated abdominal aortic dissection:indications and strategies for treatment[J]. Ann Vasc Surg,2023,99:117-124.

[9] 丁建华. 胸腹血管CTA在胸腹主动脉夹层诊断中的应用研究[J]. 保健文汇,2023,24(32):117-120.

[10] Hanandeh A,Weaver M,Baidoun F. Identification and management of abdominal aortic dissection with concurrent aneurysm[J]. Cureus,2021,13(7):e16621.

[11] Moreira M,Antunes L,Moreira J,et al. Unusual presentation of ruptured abdominal aortic aneurysm[J]. Rev Port Cir Cardiotorac Vasc,2019,26(1):71-73.

[12] 李长山,夏国亮. 腹主动脉瘤破裂的CT征象[J]. 实用医技杂志,2008,15(23):3053-3054.

[13] Accarino G,Giordano AN,Falcone M,et al. Abdominal aortic aneurysm:natural history,pathophysiology and translational perspectives[J].Transl Med UniSa,2022,24(2):30-40.

[14] Petsophonsakul P,Furmanik M,Forsythe R,et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol,2019,39(7):1351-1368.

[15] 李彩娟,赵自刚. 细胞自噬促进血管平滑肌细胞向合成表型转化的作用与机制[J]. 中国病理生理杂志,2022,38(2):358-363.

[16] Guan S,Zhao L,Peng R. Mitochondrial respiratory chain supercomplexes:from structure to function[J]. Int J Mol Sc i,2022,23(22):13880.

[17] Fernandez-Vizarra E,Zeviani M. Mitochondrial disorders of the OXPHOS system[J]. FEBS lett,2021,595(8):1062-1106.

[18] Gordon CA,Madamanchi NR,Runge MS,et al. Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells[J]. Biochim Biophys Acta Mol Basis Dis,2022,1868(7):166397.

[19] Reinhardt C,Arena G,Nedara K,et al. AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway[J]. Biochim Biophys Acta Mol Basis Dis ,2020,1866(6):165746.

[20] Neginskaya MA,Pavlov EV,Sheu SS. Electrophysiological properties of the mitochondrial permeability transition pores:Channel diversity and disease implication[J]. Biochim Biophys Acta Bioenerg,2021,1862(3):148357.

[21] Bonora M,Giorgi C,Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition[J]. Nat Rev Mol Cell Biol,2022,23(4):266-285.

[22] Xia D,Chen Y,Luo G,et al. Atherosclerosis:from the disruption of mitochondrial membrane potential to the potential interventional strategies[J]. Curr Med Chem,2023,30(38):4355-4373.

[23] Li Q,Youn JY,Siu KL,et al. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction[J]. Redox Biol,2019,24:101185.

[24] Zhao J,Li J,Li G,et al. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases[J]. Front Cardiovasc Med ,2022,9:1059576.

[25] Zhang M,Sui W,Cheng C,et al. Erythropoietin promotes abdominal aortic aneurysms in mice through angiogenesis and inflammatory infiltration[J]. Sci Transl Med,2021,13(603):eaaz4959.

[26] Márquez-Sánchez AC,Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm[J]. Front Immunol,2022,13:989933.

[27] Foote K,Reinhold J,Yu EPK,et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice[J]. Aging cell,2018,17(4):e12773.

[28] Mercer JR,Cheng KK,Figg N,et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome[J]. Circ Res,2010,107(8):1021-31.

[29] Nadalutti CA,Ayala-Pe?a S,Santos JH. Mitochondrial DNA damage as driver of cellular outcomes[J]. Am J Physiol Cell Physiol,2022,322(2):C136-C150.

[30] Fontana GA,Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation[J]. Nucleic Acids Res,2020,48(20):11244-11258.

[31] Chan DC. Mitochondrial dynamics and its involvement in disease[J]. Annu Rev Pathol,2020,15:235-259.

[32] Tokuyama T,Yanagi S. Role of mitochondrial dynamics in heart diseases[J]. Genes(Basel),2023,14(10):1876.

[33] Guo X,Chen KH,Guo Y,et al. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway[J]. Circ Res,2007,101(11):1113-1122.

[34] Cooper HA,Cicalese S,Preston KJ,et al. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm[J]. Cardiovasc Res,2021,117(3):971-982.

[35] Cheng J,Wei L,Li M. Progress in regulation of mitochondrial dynamics and mitochondrial autophagy[J]. Sheng Li Xue Bao,2020,72(4):475-487.

[36] Ng MYW,Wai T,Simonsen A. Quality control of the mitochondrion[J]. Dev Cell,2021,56(7):881-905.

[37] Adebayo M,Singh S,Singh AP,et al. Mitochondrial fusion and fission:the fine-tune balance for cellular homeostasis[J]. FASEB J,2021,35(6):e21620.

[38] Yang L,Shen L,Gao P,et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms[J]. Oncotarget,2017,8(54):92827-92840.

[39] Prasun P. Mitochondrial dysfunction in metabolic syndrome[J]. Biochim Biophys Acta Mol Basis Dis,2020,1866(10):165838.

[40] Martínez-Reyes I,Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun,2020,11(1):102.

[41] Cavestro C,Diodato D,Tiranti V,et al. Inherited disorders of coenzyme A biosynthesis:models,mechanisms,and treatments[J]. Int J Mol Sci,2023,24(6):5951.

[42] Golledge J. Abdominal aortic aneurysm:update on pathogenesis and medical treatments[J]. Nat Rev Cardiol,2019,16(4):225-242.

[43] Van Bochove CA,Burgers LT,Vahl AC,et al. Cost-effectiveness of open versus endovascular repair of abdominal aortic aneurysm[J]. J Vasc Surg,2016,63(3):827-838.e2.

[44] Wang LJ,Prabhakar AM,Kwolek CJ. Current status of the treatment of infrarenal abdominal aortic aneurysms[J]. Cardiovasc Diagn Ther ,2018,8(Suppl 1):S191-S199.

[45] 黄弘伟. 腹主动脉夹层腔内修复手术的研究进展[J]. 中外医学研究,2022,20(7):178-181.

[46] Sun LY,Lyu YY,Zhang HY,et al. Nuclear receptor NR1D1 regulates abdominal aortic aneurysm development by targeting the mitochondrial tricarboxylic acid cycle enzyme aconitase-2[J]. Circulation,2022,146(21):1591-1609.

相似文献/References:

[1]王欣笛,苏冠华. MicroRNA-155在高血压发病机制和治疗中的研究进展[J].心血管病学进展,2020,(10):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
 WANG Xindi,SU Guanhua.MicroRNA-155 in Pathogenesis and Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2020,(5):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
[2]冯松林 余皓 吴欣择 李朝阳 施森.MicroRNA在腹主动脉瘤发生和发展中的调控机制[J].心血管病学进展,2020,(11):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 Abdominal Aortic Aneurysm.Regulatory Mechanism of MicroRNA in Occurrence and Development of[J].Advances in Cardiovascular Diseases,2020,(5):1168.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[3]蔡宇宸 姚弈伟 陈鑫.ADAMTS家族蛋白与主动脉瘤相关性的研究及进展[J].心血管病学进展,2022,(5):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
 CAI Yuchen,YAO Yiwei,CHEN Xin.The Association of ADAMTS Family with Aortic Aneurysms[J].Advances in Cardiovascular Diseases,2022,(5):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
[4]蔡一帆 董倩 俞坤武 曾秋棠.炎症细胞参与腹主动脉瘤的研究进展[J].心血管病学进展,2022,(7):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 CAI Yifan,Dong Qian,YU Kunwu,et al.Pathogenesis of Inflammatory Cell in Abdominal Aortic Aneurysm[J].Advances in Cardiovascular Diseases,2022,(5):630.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[5]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(5):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[6]周昌颐 王瑞 沈雳.血管支架植入对血管平滑肌细胞的影响[J].心血管病学进展,2023,(4):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
 ZHOU Changyi,WANG Rui,SHEN Li.Impact of Vascular Stent Implantation on Vascular Smooth Muscle Cells[J].Advances in Cardiovascular Diseases,2023,(5):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
[7]丁姝颖 于子翔 马依彤.线粒体功能障碍与血管钙化发生的研究进展[J].心血管病学进展,2024,(3):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
 DING Shuying,YU Zixiang,MA Yitong.Research Progress in Mitochondria Dysfunction and the Development of Vascular Calcification[J].Advances in Cardiovascular Diseases,2024,(5):253.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.014]
[8]黄延鑫 姚园 吴星亮 刘力源 易欣.血管平滑肌细胞程序性死亡在主动脉夹层中的研究进展与展望[J].心血管病学进展,2024,(8):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
 HUANG YanxinYAO YuanWU XingliangLIU LiyuanYI Xin.Progress and Perspectives of Programmed Vascular Smooth Muscle Cell Death?n Aortic Coarctation[J].Advances in Cardiovascular Diseases,2024,(5):712.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.009]
[9]张昊亮 林政凯 陈志杰 陈丽君 杨阳.单细胞测序技术解析血管平滑肌细胞的可塑性在动脉粥样硬化中的作用[J].心血管病学进展,2024,(9):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]
 ZHANG Haoliang,LIN Zhengkai,CHEN Zhijie,et al.Roles of Vascular Smooth Muscle Cell Plasticity in Development of Atherosclerosis as Revealed by Single-Cell Sequencing[J].Advances in Cardiovascular Diseases,2024,(5):821.[doi:10.16806/j.cnki.issn.1004-3934.2024.09.012]

更新日期/Last Update: 2024-06-28