[1]周昌颐 王瑞 沈雳.血管支架植入对血管平滑肌细胞的影响[J].心血管病学进展,2023,(4):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
 ZHOU Changyi,WANG Rui,SHEN Li.Impact of Vascular Stent Implantation on Vascular Smooth Muscle Cells[J].Advances in Cardiovascular Diseases,2023,(4):299.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.003]
点击复制

血管支架植入对血管平滑肌细胞的影响()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年4期
页码:
299
栏目:
综述
出版日期:
2023-04-25

文章信息/Info

Title:
Impact of Vascular Stent Implantation on Vascular Smooth Muscle Cells
作者:
周昌颐 王瑞 沈雳
(复旦大学附属中山医院心内科 上海市心血管病研究所,上海 200032)
Author(s):
ZHOU ChangyiWANG RuiSHEN Li
(Department of Cardiovascular,Zhongshan Hospital,Fudan University,Cardiovascular Disease Research Institute of Shanghai,Shanghai 200032 ,China)
关键词:
血管平滑肌细胞药物洗脱支架生物可降解支架表型转换
Keywords:
Smooth muscle cells Drug-eluting stent Bioresorbable stents Phenotype switch
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.003
摘要:
支架植入是冠心病的一种重要治疗方式,植入过程伴随着血管壁的损伤和机械性能的改变,进而导致血管平滑肌细胞进行一系列复杂的表型变化,包括从中膜向内膜的迁移和增殖,以及从收缩表型转变为合成表型等,从而导致新生内膜的增殖和支架内再狭窄的发生。恢复血管生理稳态、保持血管平滑肌细胞表型稳定是经皮冠状动脉介入的最终理想,故探究血管支架植入后血管平滑肌细胞发生的生物反应,将有助于新一代心血管器械研发、帮助临床决策的制定。现对血管支架植入对血管平滑肌细胞的生物学影响进行综述。
Abstract:
As an essential treatment of coronary artery disease,stent implantation always accompanies damaging to the vascular wall and mechanical properties altering,which in turn lead to complex changes of phenotypic switching in vascular smooth muscle cells,including its proliferation and the migration from media to the intimal,as well as the switching from the contractile phenotype to synthetic phenotype,causing the occurrence of neointimal hyperplasia and in-stent restenosis. The ultimate goal of percutaneous coronary intervention is to restore vascular hemostasis and maintain the stable contractile phenotype. Therefore,exploring the biological response of vascular smooth muscle cells after vascular stenting will promote the development of a newer generation of cardiovascular devices and help make clinical decisions. This article aims at reviewing the biological effects of vascular stent implantation on vascular smooth muscle cells

参考文献/References:

[1] Torii S,Jinnouchi H,Sakamoto A,et al. Drug-eluting coronary stents:insights from preclinical and pathology studies[J]. Nat Rev Cardiol,2020,17(1):37-51.

[2] Stone GW,Kimura T,Gao R,et al. Time-varying outcomes with the absorb bioresorbable vascular scaffold during 5-year follow-up:a systematic meta-analysis and individual patient data pooled Study[J]. JAMA Cardiol,2019,4(12):1261-1269.

[3] Shen M,Quertermous T,Fischbein MP,et al. Generation of vascular smooth muscle cells from induced pluripotent stem cells:methods,applications,and considerations[J]. Circ Res,2021,128(5):670-686.

[4] Basatemur GL,J?rgensen HF,Clarke MCH,et al. Vascular smooth muscle cells in atherosclerosis[J]. Nat Rev Cardiol,2019,16(12):727-744.

[5] Miano JM,Fisher EA,Majesky MW. Fate and state of vascular smooth muscle cells in atherosclerosis[J]. Circulation,2021,143(21):2110-2116.

[6] Petsophonsakul P,Furmanik M,Forsythe R,et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol,2019,39(7):1351-1368.

[7] Zhang JR,Sun HJ. MiRNAs,lncRNAs,and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertens Res,2021,44(2):129-146.

[8] Macfarlane EG,Parker SJ,Shin JY,et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome[J]. J Clin Invest,2019,129(2):659-675.

[9] Chakraborty R,Chatterjee P,Dave JM,et al. Targeting smooth muscle cell phenotypic switching in vascular disease[J]. JVS Vasc Sci,2021,2:79-94.

[10] Yan W,Li T,Yin T,et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation[J]. Theranostics,2020,10(23):10712-10728.

[11] Jain M,Dhanesha N,Doddapattar P,et al. Smooth muscle cell-specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia[J]. J Clin Invest,2020,130(1):295-314.

[12] Huang C,Zhao J,Zhu Y. Drug-eluting stent targeting sp-1-attenuated restenosis by engaging YAP-mediated vascular smooth muscle cell phenotypic modulation[J]. J Am Heart Assoc,2020,9(1):e014103.

[13] Zhao Y,Zang G,Yin T,et al. A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent:Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway[J]. Bioact Mater,2021,6(2):375-385.

[14] Yap C,Mieremet A,de Vries CJM,et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (krüppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol,2021,41(11):2693-2707.

[15] Wirka RC,Wagh D,Paik D T,et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med,2019,25(8):1280-1289.

[16] Li Y,Zhu H,Zhang Q,et al. Smooth muscle-derived macrophage-like cells contribute to multiple cell lineages in the atherosclerotic plaque[J]. Cell Discov,2021,7(1):111.

[17] Shamsi F,Piper M,Ho LL,et al. Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes[J]. Nature Metabolism,2021,3(4):485-495.

[18] Chen J,Zhou Y,Liu S,et al. Biomechanical signal communication in vascular smooth muscle cells[J]. J Cell Commun Signal,2020,14(4):357-376.

[19] Zhang Z,Huang J,Wang Y,et al. Transcriptome analysis revealed a two-step transformation of vascular smooth muscle cells to macrophage-like cells[J]. Atherosclerosis,2022,346:26-35.

[20] Jeong K,Murphy JM,Ahn EE,et al. FAK in the nucleus prevents VSMC proliferation by promoting p27 and p21 expression via Skp2 degradation[J]. Cardiovasc Res,2022,118(4):1150-1163.

[21] Jeong K,Murphy JM,Kim JH,et al. FAK activation promotes SMC dedifferentiation via increased DNA methylation in contractile genes[J]. Circ Res,2021,129(12):e215-e233.

[22] Cornelissen A,Guo L,Fernandez R,et al. Endothelial recovery in bare metal stents and drug-eluting stents on a single-cell level[J]. Arterioscler Thromb Vasc Biol,2021,41(8):2277-2292.

[23] Bundhun PK,Wu ZJ,Chen MH. Is there any significant difference in stent thrombosis between sirolimus and paclitaxel eluting stents?:a systematic review and meta-analysis of randomized controlled trials[J]. Medicine (Baltimore),2016,95(5):e2651.

[24] Lenz KD,Klosterman KE,Mukundan H,et al. Macrolides:from toxins to therapeutics[J]. Toxins (Basel),2021,13(5):347.

[25] Borovac JA,D’amario D,Vergallo R,et al. Neoatherosclerosis after drug-eluting stent implantation:a novel clinical and therapeutic challenge[J]. Eur Heart J Cardiovasc Pharmacother,2019,5(2):105-116.

[26] Otsuka F,Byrne RA,Yahagi K,et al. Neoatherosclerosis:overview of histopathologic findings and implications for intravascular imaging assessment[J]. Eur Heart J,2015,36(32):2147-2159.

[27] Pan H,Xue C,Auerbach BJ,et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation,2020,142(21):2060-2075.

[28] Wang Y,Dubland JA,Allahverdian S,et al. Smooth muscle cells contribute the majority of foam cells in apoe (apolipoprotein e)-deficient mouse atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2019,39(5):876-887.

[29] Niu J,Wu C,Zhang M,et al. κ-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling[J]. Aging (Albany NY),2021,13(10):14355-14371.

[30] Jain M,Dhanesha N,Doddapattar P,et al. Smooth muscle cell–specific PKM2 (pyruvate kinase muscle 2) promotes smooth muscle cell phenotypic switching and neointimal hyperplasia[J]. Arterioscler Thromb Vasc Biol,2021,41(5):1724-1737.

[31] Zhou Q,Xu J,Liu M,et al. Warburg effect is involved in apelin-13-induced human aortic vascular smooth muscle cells proliferation[J]. J Cell Physiol,2019,234(9):14413-14421.

[32] Yang L,Gao L,Nickel T,et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells[J]. Circ Res,2017,121(11):1251-1262.

[33] Zhu Y,Han XQ,Sun XJ,et al. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy[J]. Apoptosis,2020,25(5):321-340.

[34] Jinnouchi H,Torii S,Sakamoto A,et al. Fully bioresorbable vascular scaffolds:lessons learned and future directions[J]. Nat Rev Cardiol,2019,16(5):286-304.

[35] Ter Braake AD,Vervloet MG,de Baaij JHF,et al. Magnesium to prevent kidney disease–associated vascular calcification:crystal clear?[J]. Nephrol Dial Transplant,2020,37(3):421-429.

[36] Fedele G,Castiglioni S,Maier JA,et al. High magnesium and sirolimus on rabbit vascular cells—an in vitro proof of concept[J]. Materials,2021,14(8):1970.

[37] Weng W,Biesiekierski A,Li Y,et al. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys[J]. Acta Biomaterialia,2021,130:80-97.

[38] Nicol P,Bulin A,Castellanos MI,et al. Preclinical investigation of neoatherosclerosis in magnesium-based bioresorbable scaffolds versus thick-strut drug-eluting stents[J]. EuroIntervention,2020,16(11):e922-e929.

[39] Lin S,Ran X,Yan X,et al. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model[J]. J Biomed Mater Res B Appl Biomater,2019,107(6):1814-1823.

[40] Bagshaw ORM,Moradi F,Moffatt CS,et al. Bioabsorbable metal zinc differentially affects mitochondria in vascular endothelial and smooth muscle cells[J]. Biomater Biosyst,2021,4:100027.

[41] Guillory RJ 2nd,Kolesar TM,Oliver AA,et al. Zn(2+)-dependent suppression of vascular smooth muscle intimal hyperplasia from biodegradable zinc implants[J]. Mater Sci Eng C Mater Biol Appl,2020,111:110826.

[42] Henze LA,Estepa M,Pieske B,et al. Zinc ameliorates the osteogenic effects of high glucose in vascular smooth muscle cells[J]. Cells,2021,10(11):3083.

相似文献/References:

[1]何晨,综述,袁晋青,等.冠状动脉支架置入术后再狭窄的治疗研究进展[J].心血管病学进展,2016,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.006]
 HE Chen,YUAN Jinqing.Current Treatment of In-stent Restenosis[J].Advances in Cardiovascular Diseases,2016,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.006]
[2]陆鑫 张华.无载体含药物洗脱支架研究进展1[J].心血管病学进展,2019,(7):1032.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.017]
 LU xinZHANG Hua.Polymer-free Drug-eluting Stent[J].Advances in Cardiovascular Diseases,2019,(4):1032.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.017]
[3]王欣笛,苏冠华. MicroRNA-155在高血压发病机制和治疗中的研究进展[J].心血管病学进展,2020,(10):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
 WANG Xindi,SU Guanhua.MicroRNA-155 in Pathogenesis and Treatment of Hypertension[J].Advances in Cardiovascular Diseases,2020,(4):1040.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.010]
[4]陈彭辉 李军山 何晋.血管内超声指导冠状动脉复杂病变的介入治疗进展[J].心血管病学进展,2020,(11):1140.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
 CHEN Penghui,LI Junshan,HE Jin.Interventional Therapy for Complex Coronary Artery Lesions Guided by Intravascular Ultrasound[J].Advances in Cardiovascular Diseases,2020,(4):1140.[doi:10.16806/j.cnki.issn.1004-3934.2020.11.000]
[5]牛梦瑶 胡晓惠 张静.冠状动脉小血管病变中药物球囊的应用进展[J].心血管病学进展,2022,(1):68.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.018]
 NIU Mengyao,HU Xiaohui,ZHANG Jing.Application of Drug Balloon in Coronary Small Vessel Disease[J].Advances in Cardiovascular Diseases,2022,(4):68.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.018]
[6]赵代鑫?胡晓军?谭巨浪?裴畅.基于Meta分析对比药物涂层球囊与药物洗脱支架在细小冠状动脉疾病中的应用[J].心血管病学进展,2022,(1):82.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.021]
 ZHAO Daixin,HU Xiaojun,TAN Julang,et al.Comparison of Application of Drug-Coated Balloon and Drug-Eluting Stent in Small Coronary Artery Disease Based on Meta Analysis[J].Advances in Cardiovascular Diseases,2022,(4):82.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.021]
[7]蔡宇宸 姚弈伟 陈鑫.ADAMTS家族蛋白与主动脉瘤相关性的研究及进展[J].心血管病学进展,2022,(5):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
 CAI Yuchen,YAO Yiwei,CHEN Xin.The Association of ADAMTS Family with Aortic Aneurysms[J].Advances in Cardiovascular Diseases,2022,(4):450.[doi:10.16806/j.cnki.issn.1004-3934.2022.05.016]
[8]袁晓航 冯欢欢 高磊.复发性支架内再狭窄的研究进展[J].心血管病学进展,2022,(8):677.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.002]
 YUAN Xiaohang FENG Huanhuan GAO Lei.Recurrent In-Stent Restenosis[J].Advances in Cardiovascular Diseases,2022,(4):677.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.002]
[9]杨晓晓 王峰 罗善顺 石立力.利拉鲁肽对糖尿病合并动脉粥样硬化模型中骨保护素的影响及机制研究[J].心血管病学进展,2022,(8):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
 YANG Xiaoxiao,WANG Feng,LUO Shanshun,et al.The effect and Mechanism of Liraglutide on Osteoprotegerin?n Diabetic Atherosclerosis Rat[J].Advances in Cardiovascular Diseases,2022,(4):753.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.021]
[10]徐怡 农家聪 郭雅洁 许田 尤威 吴向起 吴志明 孟培娜 贾海波 叶飞.药物洗脱支架植入术后边缘效应的研究进展[J].心血管病学进展,2022,(12):1083.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.006]
 XU Yi,NONG Jiacong,GUO Yajie,et al.Edge Effect After Drug Eluting Stenting[J].Advances in Cardiovascular Diseases,2022,(4):1083.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.006]

更新日期/Last Update: 2023-05-17