[1]李思聪 罗勤 赵智慧 赵青 柳志红.房间隔缺损相关肺动脉高压机制及治疗进展[J].心血管病学进展,2024,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]
 LI Sicong,LUO Qin,ZHAO Zhihui,et al.Pathogenesis and Treatment of Pulmonary Hypertension Associated with Atrial Septal Defect[J].Advances in Cardiovascular Diseases,2024,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]
点击复制

房间隔缺损相关肺动脉高压机制及治疗进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年1期
页码:
11
栏目:
主题综述
出版日期:
2024-02-21

文章信息/Info

Title:
Pathogenesis and Treatment of Pulmonary Hypertension Associated with Atrial Septal Defect
作者:
李思聪 罗勤 赵智慧 赵青 柳志红
(中国医学科学院 北京协和医学院 国家心血管病中心 阜外医院,北京 100037)
Author(s):
LI SicongLUO QinZHAO ZhihuiZHAO QingLIU Zhihong
(Fuwai Hospital,National Center for Cardiovascular Diseases,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100037,China)
关键词:
先天性心脏病房间隔缺损肺动脉高压发病机制
Keywords:
Congenital heart diseaseAtrial septal defectPulmonary hypertensionPathogenesis
DOI:
10.16806/j.cnki.issn.1004-3934.2024.01.004
摘要:
房间隔缺损(ASD)是常见的先天性心脏病,部分患者可能会并发肺动脉高压,对治疗和预后产生重大影响。虽然分流是先天性心脏病患者发生肺动脉高压的决定性因素,但部分患者的分流量并不足以解释肺动脉高压的严重程度。因此,阐明ASD相关肺动脉高压多方面的发病机制,对于认识肺动脉高压的发生发展过程和指导ASD的治疗具有重要意义。现就ASD相关肺动脉高压的病理生理学机制、危险因素和治疗策略的研究进展做一综述,为此类患者的诊治提供参考。
Abstract:
Atrial septal defect(ASD) is a common congenital heart disease,and some patients may develop pulmonary hypertension(PH),which has a significant impact on treatment and prognosis. Although shunt is a decisive factor in the occurrence of PH in patients with congenital heart disease,the shunt flow in some patients is not sufficient to explain the severity of PH. Therefore,elucidating the multifaceted pathogenesis of PH associated with ASD is of great significance for understanding the occurrence and development process of PH and guiding the treatment of ASD. This article summarizes the advances in the pathophysiological mechanisms,risk factors,and treatment strategies of PH associated with ASD,providing reference for the diagnosis and treatment of such patients

参考文献/References:

[1] van der Linde D,Konings EE,Slager MA,et al. Birth prevalence of congenital heart disease worldwide:a systematic review and meta-analysis[J]. J Am Coll Cardiol,2011,58(21):2241-2247.

[2] 高伟,顾红,胡大一,等. 2015年先天性心脏病相关性肺动脉高压诊治中国专家共识[J]. 中国介入心脏病学杂志,2015,23(2):61-69.

[3] van der Feen DE,Bartelds B,de Boer RA,et al. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease[J]. Heart,2019,105(4):276-282.

[4] Schwachtgen JL,Houston P,Campbell C,et al. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway[J]. J Clin Invest,1998,101(11):2540-2549.

[5] Warboys CM,de Luca A,Amini N,et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway[J]. Arterioscler Thromb Vasc Biol,2014,34(5):985-995.

[6] Rabinovitch M,Bothwell T,Hayakawa BN,et al. Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension. A correlation of light with scanning electron microscopy and transmission electron microscopy[J]. Lab Invest,1986,55(6):632-653.

[7] Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension[J]. J Clin Invest,2012,122(12):4306-4313.

[8] Levy M,Maurey C,Celermajer DS,et al. Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease[J]. J Am Coll Cardiol,2007,49(7):803-810.

[9] Soon E,Holmes AM,Treacy CM,et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension[J]. Circulation,2010,122(9):920-927.

[10] Kim YM,Haghighat L,Spiekerkoetter E,et al. Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions[J]. Am J Pathol,2011,179(3):1560-1572.

[11] 米沅,肖家旺,孟立立,等. 成年房间隔缺损患者并发肺动脉高压影响因素及介入封堵术后即刻肺动脉压力与肺动脉高压关系研究[J]. 临床军医杂志,2022,50(4):334-338.

[12] Yaginuma G,Mohri H,Takahashi T. Distribution of arterial lesions and collateral pathways in the pulmonary hypertension of congenital heart disease:a computer aided reconstruction study[J]. Thorax,1990,45(8):586-590.

[13] Cool CD,Stewart JS,Werahera P,et al. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth[J]. Am J Pathol,1999,155(2):411-419.

[14] Khoury GH,Hawes CR. Atrial septal defect associated with pulmonary hypertension in children living at high altitude[J]. J Pediatr,1967,70(3):432-435.

[15] Goetschmann S,Dibernardo S,Steinmann H,et al. Frequency of severe pulmonary hypertension complicating “isolated”atrial septal defect in infancy[J]. Am J Cardiol,2008,102(3):340-342.

[16] Dunham-Snary KJ,Wu D,Sykes EA,et al. Hypoxic pulmonary vasoconstriction:from molecular mechanisms to medicine[J]. Chest,2017,151(1):181-192.

[17] Rhodes J. Comparative physiology of hypoxic pulmonary hypertension:historical clues from brisket disease[J]. J Appl Physiol(1985),2005,98(3):1092-1100.

[18] Kriemler S,Jansen C,Linka A,et al. Higher pulmonary artery pressure in children than in adults upon fast ascent to high altitude[J]. Eur Respir J,2008,32(3):664-669.

[19] Bush D,Galambos C,Ivy DD,et al. Clinical characteristics and risk factors for developing pulmonary hypertension in children with Down syndrome[J]. J Pediatr,2018,202:212-219.e2.

[20] Kageyama K,Hashimoto S,Nakajima Y,et al. The change of plasma endothelin-1 levels before and after surgery with or without Down syndrome[J]. Paediatr Anaesth,2007,17(11):1071-1077.

[21] Iwaya Y,Muneuchi J,Inoue Y,et al. Relationship between pulmonary arterial resistance and compliance in patients with Down syndrome[J]. Pediatr Cardiol,2019,40(4):841-847.

[22] Bush D,Abman SH,Galambos C. Prominent intrapulmonary bronchopulmonary anastomoses and abnormal lung development in infants and children with Down syndrome[J]. J Pediatr,2017,180:156-162.e1.

[23] Zhu N,Welch CL,Wang J,et al. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease[J]. Genome Med,2018,10(1):56.

[24] Morrell NW. Pulmonary hypertension due to BMPR2 mutation:a new paradigm for tissue remodeling?[J]. Proc Am Thorac Soc,2006,3(8):680-686.

[25] Stacher E,Graham BB,Hunt JM,et al. Modern age pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med,2012,186(3):261-272.

[26] Liu D,Liu QQ,Guan LH,et al. BMPR2 mutation is a potential predisposing genetic risk factor for congenital heart disease associated pulmonary vascular disease[J]. Int J Cardiol,2016,211:132-136.

[27] van der Bruggen CE,Happe CM,Dorfmuller P,et al. Bone morphogenetic protein receptor type 2 mutation in pulmonary arterial hypertension:a view on the right ventricle[J]. Circulation,2016,133(18):1747-1760.

[28] Du M,Jiang H,Liu H,et al. Single-cell RNA sequencing reveals that BMPR2 mutation regulates right ventricular function via ID genes[J]. Eur Respir J,2022,60(1):2100327.

[29] Tatebe S,Sugimura K,Aoki T,et al. The efficacy of a genetic analysis of the BMPR2 gene in a patient with severe pulmonary arterial hypertension and an atrial septal defect treated with bilateral lung transplantation[J]. Intern Med,2017,56(23):3193-3197.

[30] Francois M,Koopman P,Beltrame M. SoxF genes:key players in the development of the cardio-vascular system[J]. Int J Biochem Cell Biol,2010,42(3):445-448.

[31] Zhu N,Gonzaga-Jauregui C,Welch CL,et al. Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults[J]. Circ Genom Precis Med,2018,11(4):e001887.

[32] Nakamura F,Osborn TM,Hartemink CA,et al. Structural basis of filamin a functions[J]. J Cell Biol,2007,179(5):1011-1025.

[33] Reinstein E,Frentz S,Morgan T,et al. Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A[J]. Eur J Hum Genet,2013,21(5):494-502.

[34] Yoshii K,Matsumoto H,Hirasawa K,et al. Microdeletion in Xq28 with a polymorphic inversion in a patient with FLNA-associated progressive lung disease[J]. Respir Investig,2019,57(4):395-398.

[35] Deng X,Li S,Qiu Q,et al. Where the congenital heart disease meets the pulmonary arterial hypertension,FLNA matters:a case report and literature review[J]. BMC Pediatr,2020,20(1):504.

[36] Ellesoe SG,Johansen MM,Bjerre JV,et al. Familial atrial septal defect and sudden cardiac death:identification of a novel NKX2-5 mutation and a review of the literature[J]. Congenit Heart Dis,2016,11(3):283-290.

[37] Rozqie R,Satwiko MG,Anggrahini DW,et al. NKX2-5 variants screening in patients with atrial septal defect in Indonesia[J]. BMC Med Genomics,2022,15(1):91.

[38] Humbert M,Kovacs G,Hoeper MM,et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J,2022,43(38):3618-3731.

[39] Baumgartner H,de Backer J,Babu-Narayan SV,et al. 2020 ESC Guidelines for the management of adult congenital heart disease[J]. Eur Heart J,2021,42(6):563-645.

[40] D’Alto M,Romeo E,Argiento P,et al. Hemodynamics of patients developing pulmonary arterial hypertension after shunt closure[J]. Int J Cardiol,2013,168(4):3797-3801.

[41] Dimopoulos K,Inuzuka R,Goletto S,et al. Improved survival among patients with Eisenmenger syndrome receiving advanced therapy for pulmonary arterial hypertension[J]. Circulation,2010,121(1):20-25.

[42] Bradley EA,Ammash N,Martinez SC,et al. “Treat-to-close”:non-repairable ASD-PAH in the adult:results from the North American ASD-PAH(NAAP) multicenter registry[J]. Int J Cardiol,2019,291:127-133.

[43] Yan C,Pan X,Wan L,et al. Combination of F-ASO and targeted medical therapy in patients with secundum ASD and severe PAH[J]. JACC Cardiovasc Interv,2020,13(17):2024-2034.

[44] Manes A,Palazzini M,Leci E,et al. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease:a comparison between clinical subgroups[J]. Eur Heart J,2014,35(11):716-724.

相似文献/References:

[1]郭琳娟,洪葵.成人先天性心脏病心律失常的诊断和治疗进展[J].心血管病学进展,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
 GUO Linjuan,HONG Kui.Advances in Diagnosis and Treatment of Adult Congenital Heart Disease with Arrhythmia[J].Advances in Cardiovascular Diseases,2015,(1):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
[2]朱峰,陈铀.先天性心脏病相关肺动脉高压的治疗进展[J].心血管病学进展,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
 ZHU Feng,CHEN You.Congenital Heart Disease-related Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(1):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
[3]王健 刘美英 廖清池.房间隔缺损合并心房颤动的介入治疗进展[J].心血管病学进展,2019,(7):1028.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.016]
 WANG Jian,LIU Meiying,LIAO Qingchi.Interventional Therapy of Atrial Septal Defect with Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2019,(1):1028.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.016]
[4]黄金秋 路发文 赵永康 陈宇雨 史红蕊 王萍 杨菊仙.先天性心脏病患儿营养状况及其危险因素分析[J].心血管病学进展,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
 HUANG Jinqiu,LU Fawen,ZHAO Yongkang,et al.Nutritional Status in Children with Congenital Heart Disease and the Influential Factors[J].Advances in Cardiovascular Diseases,2020,(1):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
[5]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
 ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(1):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
[6]于文波 陈振良 董向阳 陈忠建 崔亚洲 王鹏高 翟波.经食管超声引导三种不同路径封堵婴幼儿房间隔缺损的对比分析[J].心血管病学进展,2021,(9):849.[doi:10.16806/j.cnki.issn.1004-3934.20.09.000]
[7]伍杨 白元 赵仙先.房间隔缺损与左心耳封堵一站式手术的研究进展[J].心血管病学进展,2022,(6):485.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.002]
 WU YangBAI YuanZHAO Xianxian.One-Stop Operation for Atrial Septal Defect and?eft Atrial Appendage Closure[J].Advances in Cardiovascular Diseases,2022,(1):485.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.002]
[8]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(1):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[9]刘晓旭 莫绪明.先天性心脏病患儿心肺转流术后肠道损伤机制及治疗进展[J].心血管病学进展,2023,(6):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
 LIU Xiaoxu,MO Xuming.Mechanism and Treatment of Intestinal Injury After Cardiopulmonary Bypass in Children with Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2023,(1):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
[10]董捷 杜楚豪 董硕 刘顺 徐海涛 孙阳雪 邹孟轩 孙家树 李守军 杨克明 闫军.Uhl畸形诊断与治疗研究进展[J].心血管病学进展,2023,(8):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]
 DONG Jie DU Chuhao DONG ShuoLIU Shun,XU HaitaoSUN YangxueZOU MengxuanSUN JiashuLI Shoujun,YANG Keming,et al.Diagnosis and Treatment for Uhls Anomaly[J].Advances in Cardiovascular Diseases,2023,(1):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]

更新日期/Last Update: 2024-03-06