[1]李甜甜 亓秉超 陈亮 李妍.以线粒体为中心的调控网络在心血管疾病中的研究进展[J].心血管病学进展,2024,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]
 LI Tiantian,QI Bingchao,CHEN Liang,et al.Mitochondria-Centered Regulatory Network in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2024,(4):350.[doi:10.16806/j.cnki.issn.1004-3934.2024.04.014]
点击复制

以线粒体为中心的调控网络在心血管疾病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2024年4期
页码:
350
栏目:
综述
出版日期:
2024-04-25

文章信息/Info

Title:
Mitochondria-Centered Regulatory Network in Cardiovascular Diseases
作者:
李甜甜12 亓秉超2 陈亮1 李妍2
(1.西安医学院,陕西 西安 710021;2.空军军医大学唐都医院心血管内科,陕西 西安710038)
Author(s):
LI Tiantian12QI Bingchao2CHEN Liang1LI Yan2
(1.Xi’an Medical College,Xi’an 710021,Shaanxi,China;2.Department of Cardiology,Tangdu Hospital,Air Force Military Medical University,Xi’an 710038,Shaanxi,China)
关键词:
线粒体内质网细胞核脂滴心血管疾病
Keywords:
MitochondriaEndoplasmic reticulumNucleusLipid dropletCardiovascular disease
DOI:
10.16806/j.cnki.issn.1004-3934.2024.04.014
摘要:
线粒体是参与细胞基本功能的多功能细胞器,参与包括能量产生、活性氧生成、钙稳态、细胞存活和凋亡等过程,线粒体充当细胞中的信号枢纽,通过信号通路和直接接触位点与其他细胞器相互作用,从而在许多代谢过程中发挥核心作用。现综合线粒体与其他细胞器信号通路的传导过程及调控机制,阐述以线粒体为中心的调控网络影响细胞生命活动的机制,以及以线粒体为中心的调控网络在心血管疾病中的研究进展。
Abstract:
Mitochondria play key roles in cell regulation and signaling events,cellular responses to a variety of physiological stresses,interorganelle communication,cell proliferation,and cell death. In recent years,it has been found that mitochondria are stably coupled and interact with multiple organelles,such as the endoplasmic reticulum,nucleus,and lipid droplets,effectively promoting intracellular or intercellular signaling. This review summarizes the studies on the interaction between mitochondria and other organelles in cardiovascular diseases

参考文献/References:

[1]Desai R,East DA,Hardy L,et al. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response[J]. Sci Adv,2020,6(51):eabc9955.

[2]Eisenberg-Bord M,Zung N,Collado J,et al. Cnm1 mediates nucleus-mitochondria contact site formation in response to phospholipid levels[J]. J Cell Biol,2021,220(11):e202104100.

[3]Prachar J. Intimate contacts of mitochondria with nuclear envelope as a potential energy gateway for nucleo-cytoplasmic mRNA transport[J]. Gen Physiol Biophys,2003,22(4):525-534.

[4]Zhu D,Li X,Tian Y. Mitochondrial-to-nuclear communication in aging:an epigenetic perspective[J]. Trends Biochem Sci,2022,47(8):645-659.

[5]Rigon M,Townley AR,Campanella M. Mitochondria ensure immune surveillance by retro-communication with the nucleus[J]. Cell Metab,2021,33(5):853-855.

[6]Vizioli MG,Liu T,Miller KN,et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence[J]. Genes Dev,2020,34(5-6):428-445.

[7]Riley JS,Quarato G,Cloix C,et al. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis[J]. EMBO J,2018,37(17):e99238.

[8]Feng Y,Huang W,Paul C,et al. Mitochondrial nucleoid in cardiac homeostasis:bidirectional signaling of mitochondria and nucleus in cardiac diseases[J]. Basic Res Cardiol,2021,116(1):49.

[9]Chow EJ,Chen Y,Hudson MM,et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer[J]. J Clin Oncol,2018,36(1):44-52.

[10]Kotla S,Zhang A,Imanishi M,et al. Nucleus-mitochondria positive feedback loop formed by ERK5 S496 phosphorylation-mediated poly (ADP-ribose) polymerase activation provokes persistent pro-inflammatory senescent phenotype and accelerates coronary atherosclerosis after chemo-radiation[J]. Redox Biol,2021,47:102132.

[11]Yu W,Xu M,Zhang T,et al. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy[J]. J Physiol Sci,2019,69(1):113-127.

[12]Chelko SP,Keceli G,Carpi A,et al. Exercise triggers CAPN1-mediated AIF truncation,inducing myocyte cell death in arrhythmogenic cardiomyopathy[J]. Sci Transl Med,2021,13(581):eabf0891.

[13]Loncke J,Kaasik A,Bezprozvanny I,et al. Balancing ER-mitochondrial Ca2+ fluxes in health and disease[J]. Trends Cell Biol,2021,31(7):598-612.

[14]Williams A,Hayashi T,Wolozny D,et al. The non-apoptotic action of Bcl-xL:regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface[J]. J Bioenerg Biomembr,2016,48(3):211-225.

[15]Hamasaki M,Furuta N,Matsuda A,et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature,2013,495(7441):389-393.

[16]Eisner V,Csordás G,Hajnóczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle-pivotal roles in Ca2+ and reactive oxygen species signaling[J]. J Cell Sci,2013,126(Pt 14):2965-2978.

[17]Bassani RA,Bassani JW,Bers DM. Mitochondrial and sarcolemmal Ca2+ transport reduce [Ca2+ ]i during caffeine contractures in rabbit cardiac myocytes[J]. J Physiol,1992,453:591-608.

[18]Csordás G,Thomas AP,Hajnóczky G. Calcium Signal Transmission between Ryanodine Receptors and Mitochondria in Cardiac Muscle[J]. Trends Cardiovasc Med,2001,11(7):269-275.

[19]Ponnalagu D,Hamilton S,Sanghvi S,et al. CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection[J]. Sci Adv,2022,8(42):eabo1244.

[20]Gutierrez T,Parra V,Troncoso R,et al. Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes[J]. Cell Commun Signal,2014,12:68.

[21]Fernandez-Sanz C,Ruiz-Meana M,Miro-Casas E,et al. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium[J]. Cell Death Dis,2014,5(12):e1573.

[22]Wilson C,Lee MD,Heathcote HR,et al. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate–evoked calcium signaling[J]. J Biol Chem,2019 ,294(3):737-758.

[23]Yang YD,Li MM,Xu G,et al. Targeting mitochondria‐associated membranes as a potential therapy against endothelial injury induced by hypoxia[J]. J Cell Biochem,2019,120(11):18967-18978.

[24]Moulis M,Grousset E,Faccini J,et al. The multifunctional sorting protein PACS-2 controls mitophagosome formation in human vascular smooth muscle cells through mitochondria-ER contact sites[J]. Cells,2019,8(6):638.

[25]Yu S,Zhang L,Liu C,et al. PACS2 is required for ox-LDL-induced endothelial cell apoptosis by regulating mitochondria-associated ER membrane formation and mitochondrial Ca2+ elevation[J]. Exp Cell Res,2019,379(2):191-202.

[26]Olzmann JA,Carvalho P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol,2019,20(3):137-155.

[27]Benador IY,Veliova M,Liesa M,et al. Mitochondria bound to lipid droplets:where mitochondrial dynamics regulate lipid storage and utilization[J]. Cell Metab,2019,29(4):827-835.

[28]Young PA,Senkal CE,Suchanek AL,et al. Long-chain acyl-CoA synthetase 1 interacts with key proteins that activate and direct fatty acids into niche hepatic pathways[J]. J Biol Chem,2018,293(43):16724-16740.

[29]J?gerstr?m S,Polesie S,Wickstr?m Y,et al. Lipid droplets interact with mitochondria using SNAP23[J]. Cell Biol Int,2009,33(9):934-940.

[30]Boutant M,Kulkarni SS,Joffraud M,et al. Mfn2 is critical for brown adipose tissue thermogenic function[J]. EMBO J,2017,36(11):1543-1558.

[31]Wang H,Sreenivasan U,Hu H,et al. Perilipin 5,a lipid droplet-associated protein,provides physical and metabolic linkage to mitochondria[J]. J Lipid Res,2011,52(12):2159-2168.

[32]Wang C,Yuan Y,Wu J,et al. Plin5 deficiency exacerbates pressure overload-induced cardiac hypertrophy and heart failure by enhancing myocardial fatty acid oxidation and oxidative stress[J]. Free Radic Biol Med,2019,141:372-382.

[33]Yu J,Zhao H,Qi X,et al. Dapagliflozin mediates Plin5/PPARα signaling axis to attenuate cardiac hypertrophy[J]. Front Pharmacol,2021,12:730623.

[34]Gan X,Zhao J,Chen Y,et al. Plin5 inhibits proliferation and migration of vascular smooth muscle cell through interacting with PGC-1alpha following vascular injury[J]. Bioengineered,2022,13(4):10665-10678.

[35]Zhou PL,Li M,Han XW,et al. Perilipin 5 deficiency promotes atherosclerosis progression through accelerating inflammation,apoptosis,and oxidative stress[J]. J Cell Biochem,2019,120(11):19107-19123.

相似文献/References:

[1]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
 CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(4):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[2]高凯 苏艺婉 徐望 李智 谢扬 候钦.线粒体分裂蛋白Drp1与心血管疾病研究进展[J].心血管病学进展,2019,(8):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
 GAO Kai,SU Yiwan,XU Wang,et al.Mitochondrial Mitotic Protein Drp1 and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):1172.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.026]
[3]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
 JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(4):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[4]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(4):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[5]林筝鸣 钱航 李东锋 许浩 陈继舜 闵新文 陈俊 杨汉东.胰高血糖素样肽-1受体敲除H9c2细胞株建立及其抗凋亡作用初探[J].心血管病学进展,2022,(9):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
 LIN Zhengming,QIAN Hang,LI Dongfeng,et al.Establishment of Glucagon-Like Peptide-1 Receptor Knockout H9c2 Cell Line and Its Anti-Apoptotic Effect[J].Advances in Cardiovascular Diseases,2022,(4):852.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.019]
[6]喜林强 孙华鑫 商鲁翔 汤宝鹏 周贤惠.心房能量代谢重塑和PPARγ靶向干预在心房颤动中的研究进展[J].心血管病学进展,2023,(10):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
 XI Linqiang,SUN Huaxin,SHANG Luxiang,et al.Atrial Energy Metabolism Remodeling and Targeted Intervention of PPAR in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(4):926.[doi:10.16806/j.cnki.issn.1004-3934.2023.10.014]
[7]王洪伟,王贺,卢明凯,等.线粒体氧化应激在心房颤动电重构机制中的研究进展[J].心血管病学进展,2023,(12):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
 WANG Hongwei,WANG He,LU Mingkai,et al.Research Progress of Mitochondrial Oxidative Stress in the Mechanism of?lectrical Remodeling of Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(4):1079.[doi:10.16806/j.cnki.issn.1004-3934.2023.12.006]
[8]刘小雨 庞树朝 江杨杨 王丽欣.线粒体动力相关蛋白1与动脉粥样硬化研究进展[J].心血管病学进展,2024,(1):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
 LIU Xiaoyu,PANG Shuchao,JIANG Yangyang,et al.Dynamin-Related Protein 1 and Atherosclerosis[J].Advances in Cardiovascular Diseases,2024,(4):70.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.018]
[9]周强 曹勖 王睿.血管平滑肌细胞线粒体与腹主动脉瘤发生发展的研究进展[J].心血管病学进展,2024,(5):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
 ZHOU Qiang,CAO Xu,WANG Rui.Vascular Smooth Muscle Cell Mitochondria and Abdominal Aortic Aneurysm Formation and Development[J].Advances in Cardiovascular Diseases,2024,(4):442.[doi:10.16806/j.cnki.issn.1004-3934.2024.05.014]
[10]田卫 饶小娇 高萌 肖书娜.PGC-1α/Nrf1介导的线粒体生物合成通路在过氧化氢诱导的心肌细胞衰老中的作用机制[J].心血管病学进展,2024,(10):955.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.017]
 TIAN Wei,RAO Xiaojiao,GAO Meng,et al.The Role of PGC-1/Nrf1 Mediated Mitochondrial Biosynthesis Pathway in Hydrogen Peroxide-Induced Cardiomyocyte Senescence[J].Advances in Cardiovascular Diseases,2024,(4):955.[doi:10.16806/j.cnki.issn.1004-3934.2024.10.017]

更新日期/Last Update: 2024-05-31