参考文献/References:
[1] 中国心血管健康与疾病报告编写组,胡盛寿. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志,2022,37(6):553-578.
[2] Liu S,Zhao Y,Yao H,et al. DRP1 knockdown and atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury:DRP1 is a potential target for preventing atherosclerosis[J]. Exp Cell Res,2023,429(2):113688.
[3] Adebayo M,Singh S,Singh AP,et al. Mitochondrial fusion and fission:the fine-tune balance for cellular homeostasis[J]. FASEB J,2021,35(6):e21620.
[4] Protasoni M,Zeviani M. Mitochondrial structure and bioenergetics in normal and disease conditions[J]. Int J Mol Sci,2021,22(2):586.
[5] Lin J,Duan J,Wang Q,et al. Mitochondrial dynamics and mitophagy in cardiometabolic disease[J]. Front Cardiovasc Med,2022,9:917135.
[6] Roca-Portoles A,Tait SWG. Mitochondrial quality control:from molecule to organelle[J]. Cell Mol Life Sci,2021,78(8):3853-3866.
[7] Ng MYW,Wai T,Simonsen A. Quality control of the mitochondrion[J]. Dev Cell,2021,56(7):881-905.
[8] Forte M,Schirone L,Ameri P,et al. The role of mitochondrial dynamics in cardiovascular diseases[J]. Br J Pharmacol,2021,178(10):2060-2076.
[9] Fang X,Gustafsson ?B. DRP1-mediated mitophagy:safeguarding obese hearts from cardiomyopathy[J]. Circ Res,2023,133(1):22-24.
[10] Banerjee R,Mukherjee A,Nagotu S. Mitochondrial dynamics and its impact on human health and diseases:inside the DRP1 blackbox[J]. J Mol Med (Berl),2022,100(1):1-21.
[11] Zerihun M,Sukumaran S,Qvit N. The Drp1-mediated mitochondrial fission protein interactome as an emerging core player in mitochondrial dynamics and cardiovascular disease therapy[J]. Int J Mol Sci,2023,24(6):5785.
[12] Quiles JM,Gustafsson ?B. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol,2022,19(11):723-736.
[13] Jin JY,Wei XX,Zhi XL,et al. Drp1-dependent mitochondrial fission in cardiovascular disease[J]. Acta Pharmacol Sin,2021,42(5):655-664.
[14] Ma R,Ma L,Weng W,et al. DUSP6 SUMOylation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation[J]. Sci Adv,2020,6(13):eaaz0361.
[15] Xiao H,Zhou H,Zeng G,et al. SUMOylation targeting mitophagy in cardiovascular diseases[J]. J Mol Med(Berl),2022,100(11):1511-1538.
[16] Salnikova D,Orekhova V,Grechko A,et al. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis[J]. Int J Mol Sci,2021,22(16):8990.
[17] 王玲,蒲里津. 内皮细胞氧化应激对动脉粥样硬化发病过程的作用机制[J]. 微循环学杂志,2022,32(3):66-70,78.
[18] Li D,Yang S,Xing Y,et al. Novel insights and current evidence for mechanisms of atherosclerosis:mitochondrial dynamics as a potential therapeutic target[J]. Front Cell Dev Biol,2021,9:673839.
[19] Chen Y,Liu C,Zhou P,et al. Coronary endothelium no-reflow injury is associated with ROS -modified mitochondrial fission through the JNK-Drp1 signaling pathway[J]. Oxid Med Cell Longev,2021,2021:6699516.
[20] Forrester SJ,Preston KJ,Cooper HA,et al. Mitochondrial fission mediates endothelial inflammation[J]. Hypertension,2020,76(1):267-276.
[21] Li J,Li X,Song S,et al. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases[J]. Redox Biol,2023,64:102778.
[22] Wang PW,Pang Q,Zhou T,et al. Irisin alleviates vascular calcification by inhibiting VSMC osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling pathway in chronic kidney disease[J]. Atherosclerosis,2022,346:36-45.
[23] Xia Y,Zhang X,An P,et al. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling[J]. Int J Mol Sci,2023,24(4):3483.
[24] Zhang J,Ma CR,Hua YQ,et al. Contradictory regulation of macrophages on atherosclerosis based on polarization,death and autophagy[J]. Life Sci,2021,276:118957.
[25] Liu X,Zhang X,Niu X,et al. Mdivi-1 modulates macrophage/microglial polarization in mice with EAE via the inhibition of the TLR2/4-GSK3β-NF-κB inflammatory signaling axis[J]. Mol Neurobiol,2022,59(1) :1-16.
[26] Shang LC,Wang M,Liu Y,et al. MSCs ameliorate hepatic IR injury by modulating phenotypic transformation of kupffer cells through Drp-1 dependent mitochondrial dynamics[J]. Stem Cell Rev Rep,2023 ,19(6):1965-1980.
[27] Su ZD,Li CQ,Wang HW,et al. Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviates atherosclerosis through the modulation of M1 polarization[J]. J Transl Med,2023,21(1):427.
[28] Mushenkova NV,Bezsonov EE,Orekhova VA,et al. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development[J]. Biomedicines,2021,9(8):915.
[29] Xu Y,Zhang Y,Xu Y,et al. Activation of CD137 signaling promotes macrophage apoptosis dependent on p38 MAPK pathway-mediated mitochondrial fission[J]. Int J Biochem Cell Biol,2021,136:106003.
[30] Wang Y,Subramanian M,Yurdagul A,et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages[J]. Cell,2017,171(2):331-345.e22.
[31] Xu T,Dong Q,Luo Y,et al. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells[J]. Int J Oral Sci,2021,13(1):28.
[32] Rogers MA,Hutcheson JD,Okui T,et al. Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion[J]. Cardiovasc Res,2021,117(11):2340-2353.
[33] Fang Y,Zhu Y,Wu Y,et al. Protective effects of mitochondrial fission inhibition on ox-LDL induced VSMC foaming via metabolic reprogramming[J]. Front Pharmacol,2022,13:970151.
[34] Bordt EA,Clerc P,Roelofs BA,et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species[J]. Dev Cell,2017,40(6):583-594.e6.
[35] Aishwarya R,Alam S,Abdullah CS,et al. Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics,respiration,and autophagy in cardiomyocytes[J]. Redox Biol,2020,36:101660.
[36] Tong W,Leng L,Wang Y,et al. Buyang huanwu decoction inhibits diabetes-accelerated atherosclerosis via reduction of AMPK-Drp1-mitochondrial fission axis[J]. J Ethnopharmacol,2023,312:116432.
[37] Chen CC,Li HY,Leu YL,et al. Corylin inhibits vascular cell inflammation,proliferation and migration and reduces atherosclerosis in apoE-deficient mice[J]. Antioxidants(Basel),2020,9(4):275.
[38] Zhu Y,Li M,Lu Y,et al. Ilexgenin A inhibits mitochondrial fission and promote Drp1 degradation by Nrf2-induced PSMB5 in endothelial cells[J]. Drug Dev Res,2019,80(4):481-489.
[39] Chen WR,Zhou YJ,Sha Y,et al. Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway[J]. J Cell Mol Med,2020,24(11):6043-6054.
[40] Hua J,Gao Z,Zhong S,et al. CISD1 protects against atherosclerosis by suppressing lipid accumulation and inflammation via mediating Drp1[J]. Biochem Biophys Res Commun,2021,577:80-88.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(1):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]陈忠秀,综述,饶莉,等.线粒体能量代谢异常与病理性心肌肥大的研究进展[J].心血管病学进展,2016,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
CHEN Zhongxiu,RAO Li.Mitochondrial Energy Metabolism and Pathological Cardiac Hypertrophy[J].Advances in Cardiovascular Diseases,2016,(1):247.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.008]
[3]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[4]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[5]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(1):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[6]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(1):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[7]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(1):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[8]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[9]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(1):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[10]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(1):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]