[1]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
点击复制

胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1024
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy
作者:
林佳音 王莉莉 于小晴
(大连医科大学附属第二医院心内科,辽宁 大连 116000)
Author(s):
LIN JiayinWANG LiliYU Xiaoqing
( Department of Cardiology,The Second Hospital of Dalian Medical University,Dalian 116000,Liaoning,China)
关键词:
糖尿病心肌病胰高血糖素样肽-1受体激动剂氧化应激
Keywords:
Diabetic cardiomyopathyGlucagon-like peptide-1 r eceptor agonistOxidative stress
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.015
摘要:
随着糖尿病患病率逐年升高,糖尿病心肌病(DCM)的患病率也呈升高趋势。DCM初期的主要表现是心肌舒张及收缩功能障碍,最终导致临床心力衰竭。DCM的发病机制复杂多样,尚需进一步临床研究。近年来,胰高血糖素样肽-1受体激动剂在临床上得到广泛应用,其在降糖作用外兼具调节多种心血管危险因素,从而抑制动脉粥样硬化进程,减少冠状动脉事件,降低心血管死亡的发生。然而胰高血糖素样肽-1受体激动剂对DCM的影响尚不明确,现就相关领域研究进行综述。
Abstract:
As the prevalence of diabetes increases year by year,the prevalence of diabetic cardiomyopathy(DCM) is also increasing. The main manifestation of DCM in the early stage is myocardial diastolic and systolic dysfunction,which ultimately leads to clinical heart failure. Its pathogenesis is complex and multiple,and further clinical research is needed. In recent years,glucagon-like peptide-1(GLP-1) receptor agonists have been widely used in clinical practice. In addition to the hypoglycemic effect,it also regulates a variety of cardiovascular risk factors,thereby inhibiting the process of atherosclerosis,reducing coronary events,and reducing the incidence of cardiovascular death. However,the effect of GLP-1 receptor agonists on DCM is still unclear. This article reviews the research in related fields

参考文献/References:

[1].Zhou Y,Lu Q. Hydroxyurea protects against diabetic cardiomyopathy by inhibiting inflammation and apoptosis[J]. Biomed Pharmacother,2022,153:113291.
[2].Jia G,Hill MA,Sowers JR,et al. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[3].Yap J,Tay WT,Teng TK,et al. Association of diabetes mellitus on cardiac remodeling,quality of life,and clinical outcomes in heart failure with reduced and preserved ejection fraction[J]. J Am Heart Assoc,2019,8(17):e013114.
[4].Tan Y,Zhang Z,Zheng C,et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies:preclinical and clinical evidence[J]. Nat Rev Cardiol,2020,17(9):585-607.
[5].Müller TD,Finan B,Bloom SR,et al. Glucagon-like peptide 1(GLP-1)[J]. Mol Metab,2019,30:72-130.
[6].Andersen A,Lund A,Knop FK,et al. Glucagon-like peptide 1 in health and disease[J]. Nat Rev Endocrinol,2018,14(7):390-403.
[7].Gilbert MP,Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy:review of head-to-head clinical trials[J]. Front Endocrinol(Lausanne),2020,11:178.
[8].Alicic RZ,Cox EJ,Neumiller JJ,et al. Incretin drugs in diabetic kidney disease:biological mechanisms and clinical evidence[J]. Nat Rev Nephrol,2021,17(4):227-244.
[9].Dungan KM,Povedano ST,Forst T,et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6):a randomised,open-label,phase 3,non-inferiority trial[J]. Lancet,2014,384(9951):1349-1357.
[10].Patel V,Joharapurkar A,Kshirsagar S,et al. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition[J]. Chem Biol Interact,2018,282:13-21.
[11].Potts JE,Gray LJ,Brady EM,et al. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes:a systematic review and mixed treatment comparison meta-analysis[J]. PLoS One,2015,10(6):e0126769.
[12].位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,41(2):135-139.
[13].Zhao HJ,Liu HY,Yang YH,et al. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in diabetes-related diseases[J]. Int J Mol Sci,2022,23(13):7170.
[14].Pan LY,Zhang XH,Xia WJ,et al. Relaxin-3 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress[J]. Comput Math Methods Med,2022,2022:9380283.
[15].Yang T,Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury[J].?Ageing Res Rev,2023,86:101884.
[16].Guan GP,Zhang J,Liu SY,et al. Glucagon-like peptide-1 attenuates endoplasmic reticulum stress-induced apoptosis in H9c2 cardiomyocytes during hypoxia/reoxygenation through the GLP-1R/PI3K/Akt pathways[J].?Naunyn Schmiedebergs Arch Pharmacol,2019,392(6):715-722.
[17].张雄慧,郭浩,米卓卓,等.糖尿病心肌病发病机制研究进展[J]. 现代医药卫生,2021,37(22):3850-3854.
[18].张梦宇,于万德. 秋葵总黄酮通过抑制炎症反应对糖尿病小鼠的心脏保护作用[J].医学研究生学报,2022,35(4):359-366.
[19].Tang Z,Wang P,Dong C,et al. Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy[J]. Oxid Med Cell Longev,2022,2022:5913374.
[20].Zobel EH,Ripa RS,von Scholten BJ,et al. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes[J]. Sci Rep,2021,11(1):18522.
[21].Knudsen LB,Lau J. The discovery and development of liraglutide and semaglutide[J]. Front Endocrinol(Lausanne),2019,10:155.
[22].Chen MY,Meng XF,Han YP,et al. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy:inflammation and oxidative stress[J].?Front Endocrinol(Lausanne),2022,13:983713.
[23].Zhang Q,Li QC,Liu SY,et al. Glucagon-like peptide-1 receptor agonist attenuates diabetic neuropathic pain via inhibition of NOD-like receptor protein 3 inflammasome in brain microglia[J].?Diabetes Res Clin Pract,2022,186:109806.
[24].Song S,Guo RY,Mehmood A,et al. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway[J]. CNS Neurosci Ther,2022,28(3):422-434.
[25].Bodiga VL,Eda SR,Bodiga S. Advanced glycation end products:role in pathology of diabetic cardiomyopathy[J]. Heart Fail Rev,2014,19(1):49-63.
[26].Jia G,Demarco VG,Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3):144-153.
[27].Dludla PV,Nkambule BB,Tiano L,et al. Uncoupling proteins as a therapeutic target to protect the diabetic heart[J]. Pharmacol Res,2018,137:11-24.
[28].Borghetti G,von Lewinski D,Eaton DM,et al. Diabetic cardiomyopathy:current and future therapies. Beyond glycemic control[J]. Front Physiol,2018,9:1514.
[29].He WB,Tong G,Fan HL,et al. Exendin-4 alleviates myocardial ischemia reperfusion injury by enhancing autophagy through promoting nuclear translocation of TFEB[J].?Exp Cell Res,2023,423(2):113469.
[30].Inoue T,Inoguchi T,Sonoda N,et al. GLP-1 analog liraglutide protects against cardiac steatosis,oxidative stress and apoptosis in streptozotocin-induced diabetic rats[J]. Atherosclerosis,2015,240(1):250-259.
[31].Trang NN,Chung CC,Lee TW,et al. Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats[J]. Int J Mol Sci,2021,22(3):1177.
[32].Gopal K,Chahade JJ,Kim R,et al. The impact of antidiabetic therapies on diastolic dysfunction and diabetic cardiomyopathy[J]. Front Physiol,2020,11:603247.
[33].Wang Y,Cai F,Li G,et al. Novel dual glucagon-like peptide-1/ glucose-dependent insulinotropic polypeptide receptor agonist attenuates diabetes and myocardial injury through inhibiting hyperglycemia,inflammation and oxidative stress in rodent animals[J]. Bioengineered,2022,13(4):9184-9196.
[34].El-Shafey M,El-Agawy MSE,Eldosoky M,et al. Role of dapagliflozin and liraglutide on diabetes-induced cardiomyopathy in rats:implication of oxidative stress,inflammation,and apoptosis[J]. Front Endocrinol(Lausanne),2022,13:862394.
[35].Fang P,Ye Z,Li R,et al. Glucagon-like peptide-1 receptor agonist protects against diabetic cardiomyopathy by modulating microRNA-29b-3p/SLMAP[J]. Drug Des Devel Ther,2023,17:791-806.
[36].Zhou Y,Huang S,Li C,et al. Glucagon-like peptide-1(GLP-1) rescue diabetic cardiac dysfuntions in human iPSC-derived cardiomyocytes[J]. Adv Biol(Weinh),2022,14:e2200130.

相似文献/References:

[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(11):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(11):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
 ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[6]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(11):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(11):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(11):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[9]王景如 刘素云.改善2型糖尿病患者的不良心血管结局:GLP-1RA与SGLT-2i可联合应用吗?[J].心血管病学进展,2022,(8):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]
 WANG Jingru,LIU suyun.Improve Adverse Cardiovascular Outcomes in Patients with Type 2 DiabetesCan GLP-1RA be Combined with SGLT-2i[J].Advances in Cardiovascular Diseases,2022,(11):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]
[10]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(11):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]

更新日期/Last Update: 2023-12-13