参考文献/References:
[1].Zhou Y,Lu Q. Hydroxyurea protects against diabetic cardiomyopathy by inhibiting inflammation and apoptosis[J]. Biomed Pharmacother,2022,153:113291.
[2].Jia G,Hill MA,Sowers JR,et al. Diabetic cardiomyopathy:an update of mechanisms contributing to this clinical entity[J]. Circ Res,2018,122(4):624-638.
[3].Yap J,Tay WT,Teng TK,et al. Association of diabetes mellitus on cardiac remodeling,quality of life,and clinical outcomes in heart failure with reduced and preserved ejection fraction[J]. J Am Heart Assoc,2019,8(17):e013114.
[4].Tan Y,Zhang Z,Zheng C,et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies:preclinical and clinical evidence[J]. Nat Rev Cardiol,2020,17(9):585-607.
[5].Müller TD,Finan B,Bloom SR,et al. Glucagon-like peptide 1(GLP-1)[J]. Mol Metab,2019,30:72-130.
[6].Andersen A,Lund A,Knop FK,et al. Glucagon-like peptide 1 in health and disease[J]. Nat Rev Endocrinol,2018,14(7):390-403.
[7].Gilbert MP,Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy:review of head-to-head clinical trials[J]. Front Endocrinol(Lausanne),2020,11:178.
[8].Alicic RZ,Cox EJ,Neumiller JJ,et al. Incretin drugs in diabetic kidney disease:biological mechanisms and clinical evidence[J]. Nat Rev Nephrol,2021,17(4):227-244.
[9].Dungan KM,Povedano ST,Forst T,et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6):a randomised,open-label,phase 3,non-inferiority trial[J]. Lancet,2014,384(9951):1349-1357.
[10].Patel V,Joharapurkar A,Kshirsagar S,et al. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition[J]. Chem Biol Interact,2018,282:13-21.
[11].Potts JE,Gray LJ,Brady EM,et al. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes:a systematic review and mixed treatment comparison meta-analysis[J]. PLoS One,2015,10(6):e0126769.
[12].位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,41(2):135-139.
[13].Zhao HJ,Liu HY,Yang YH,et al. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in diabetes-related diseases[J]. Int J Mol Sci,2022,23(13):7170.
[14].Pan LY,Zhang XH,Xia WJ,et al. Relaxin-3 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress[J]. Comput Math Methods Med,2022,2022:9380283.
[15].Yang T,Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury[J].?Ageing Res Rev,2023,86:101884.
[16].Guan GP,Zhang J,Liu SY,et al. Glucagon-like peptide-1 attenuates endoplasmic reticulum stress-induced apoptosis in H9c2 cardiomyocytes during hypoxia/reoxygenation through the GLP-1R/PI3K/Akt pathways[J].?Naunyn Schmiedebergs Arch Pharmacol,2019,392(6):715-722.
[17].张雄慧,郭浩,米卓卓,等.糖尿病心肌病发病机制研究进展[J]. 现代医药卫生,2021,37(22):3850-3854.
[18].张梦宇,于万德. 秋葵总黄酮通过抑制炎症反应对糖尿病小鼠的心脏保护作用[J].医学研究生学报,2022,35(4):359-366.
[19].Tang Z,Wang P,Dong C,et al. Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy[J]. Oxid Med Cell Longev,2022,2022:5913374.
[20].Zobel EH,Ripa RS,von Scholten BJ,et al. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes[J]. Sci Rep,2021,11(1):18522.
[21].Knudsen LB,Lau J. The discovery and development of liraglutide and semaglutide[J]. Front Endocrinol(Lausanne),2019,10:155.
[22].Chen MY,Meng XF,Han YP,et al. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy:inflammation and oxidative stress[J].?Front Endocrinol(Lausanne),2022,13:983713.
[23].Zhang Q,Li QC,Liu SY,et al. Glucagon-like peptide-1 receptor agonist attenuates diabetic neuropathic pain via inhibition of NOD-like receptor protein 3 inflammasome in brain microglia[J].?Diabetes Res Clin Pract,2022,186:109806.
[24].Song S,Guo RY,Mehmood A,et al. Liraglutide attenuate central nervous inflammation and demyelination through AMPK and pyroptosis-related NLRP3 pathway[J]. CNS Neurosci Ther,2022,28(3):422-434.
[25].Bodiga VL,Eda SR,Bodiga S. Advanced glycation end products:role in pathology of diabetic cardiomyopathy[J]. Heart Fail Rev,2014,19(1):49-63.
[26].Jia G,Demarco VG,Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nat Rev Endocrinol,2016,12(3):144-153.
[27].Dludla PV,Nkambule BB,Tiano L,et al. Uncoupling proteins as a therapeutic target to protect the diabetic heart[J]. Pharmacol Res,2018,137:11-24.
[28].Borghetti G,von Lewinski D,Eaton DM,et al. Diabetic cardiomyopathy:current and future therapies. Beyond glycemic control[J]. Front Physiol,2018,9:1514.
[29].He WB,Tong G,Fan HL,et al. Exendin-4 alleviates myocardial ischemia reperfusion injury by enhancing autophagy through promoting nuclear translocation of TFEB[J].?Exp Cell Res,2023,423(2):113469.
[30].Inoue T,Inoguchi T,Sonoda N,et al. GLP-1 analog liraglutide protects against cardiac steatosis,oxidative stress and apoptosis in streptozotocin-induced diabetic rats[J]. Atherosclerosis,2015,240(1):250-259.
[31].Trang NN,Chung CC,Lee TW,et al. Empagliflozin and liraglutide differentially modulate cardiac metabolism in diabetic cardiomyopathy in rats[J]. Int J Mol Sci,2021,22(3):1177.
[32].Gopal K,Chahade JJ,Kim R,et al. The impact of antidiabetic therapies on diastolic dysfunction and diabetic cardiomyopathy[J]. Front Physiol,2020,11:603247.
[33].Wang Y,Cai F,Li G,et al. Novel dual glucagon-like peptide-1/ glucose-dependent insulinotropic polypeptide receptor agonist attenuates diabetes and myocardial injury through inhibiting hyperglycemia,inflammation and oxidative stress in rodent animals[J]. Bioengineered,2022,13(4):9184-9196.
[34].El-Shafey M,El-Agawy MSE,Eldosoky M,et al. Role of dapagliflozin and liraglutide on diabetes-induced cardiomyopathy in rats:implication of oxidative stress,inflammation,and apoptosis[J]. Front Endocrinol(Lausanne),2022,13:862394.
[35].Fang P,Ye Z,Li R,et al. Glucagon-like peptide-1 receptor agonist protects against diabetic cardiomyopathy by modulating microRNA-29b-3p/SLMAP[J]. Drug Des Devel Ther,2023,17:791-806.
[36].Zhou Y,Huang S,Li C,et al. Glucagon-like peptide-1(GLP-1) rescue diabetic cardiac dysfuntions in human iPSC-derived cardiomyocytes[J]. Adv Biol(Weinh),2022,14:e2200130.
相似文献/References:
[1]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes
of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(11):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[2]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):731.[doi:10.3969/j.issn.1004-3934.2015.06.019]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in
Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(11):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(11):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]张阳扬 尹德录.新型降糖药物在心力衰竭中的应用前[J].心血管病学进展,2020,(6):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
ZHANG Yangyang,YIN Delu.Prospect of New Glucose-lowering Drugs in Heart Failure[J].Advances in Cardiovascular Diseases,2020,(11):599.[doi:10.16806/j.cnki.issn.1004-3934.20.06.010]
[6]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(11):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(11):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[8]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(11):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[9]王景如 刘素云.改善2型糖尿病患者的不良心血管结局:GLP-1RA与SGLT-2i可联合应用吗?[J].心血管病学进展,2022,(8):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]
WANG Jingru,LIU suyun.Improve Adverse Cardiovascular Outcomes in Patients with Type 2 DiabetesCan GLP-1RA be Combined with SGLT-2i[J].Advances in Cardiovascular Diseases,2022,(11):739.[doi:10.16806/j.cnki.issn.1004-3934.2022.08.018]
[10]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(11):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]