[1]杨沫,姜文锡.线粒体功能异常在糖尿病心肌病发病机制中的作用[J].心血管病学进展,2015,(6):731-734.[doi:10.3969/j.issn.1004-3934.2015.06.019]
 YANG Mo,JIANG Wenxi.Mitochondrial Dysfunction of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):731-734.[doi:10.3969/j.issn.1004-3934.2015.06.019]
点击复制

线粒体功能异常在糖尿病心肌病发病机制中的作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2015年6期
页码:
731-734
栏目:
综述
出版日期:
2016-06-20

文章信息/Info

Title:
Mitochondrial Dysfunction of Diabetic Cardiomyopathy
作者:
杨沫姜文锡
新疆医科大学第五附属医院,新疆 乌鲁木齐 830011
Author(s):
YANG Mo JIANG Wenxi
The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
关键词:
糖尿病心肌病 线粒体 氧化应激 自噬
Keywords:
diabetic cardiomyopathy mitochondria oxidative stress autophagy
分类号:
R587.2
DOI:
10.3969/j.issn.1004-3934.2015.06.019
文献标志码:
A
摘要:
糖尿病是一种代谢性疾病,是心血管疾病的独立危险因素。糖尿病心肌病是独立于冠状动脉疾病和高血压的糖尿病并发症之一,是一种多因素所致的复杂疾病,可导致较高的发病率及病死率。线粒体占心肌细胞中体积的35%~40%,心肌活动所需95%的ATP均由线粒体产生。当线粒体受损时,心脏功能可能随之出现异常。现对线粒体功能异常在糖尿病心肌病中作用机制的研究进展进行综述。
Abstract:
Diabetes mellitus is a metabolic syndrome that increases the risk of cardiovascular disease. Diabetic cardiomyopathy is one of its complications and independent of coronary artery disease and hypertension,and becomes a major cause of morbidity and mortality in those suffering from diabetes mellitus. It is a complex disease caused by multiple factors. Mitochondria occupy 35%~40% of cardiomyocyte volume and supply almost 95% of ATP. When they are impaired, the heart function may become disordered. This review provides an overview of mitochondrial dysfunction in the mechanism of pathogenesis of diabetic cardiomyopathy.

参考文献/References:

[1] Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract,2010,87(1):4-14
[2] Yaras N, Ugur M, Ozdemir S, et al. Effects of diabetes on ryanodine receptor Ca release channel(RyR2)and Ca2+ homeostasis in rat heart[J].Diabetes, 2005,54(11):3082-3088.
[3] Luo M, Guan X, Luczak ED, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKⅡ[J]. J Clin Invest,2013,123(3):1262-1274.
[4] Anderson EJ, Kypson AP, Rodriguez E, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart[J]. J Am Coll Cardiol,2009,54(20):1891-1898.
[5] Wang J, Wang H, Hao P, et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats[J]. Mol Med, 2011,17(3-4):172-179.
[6] Pham T, Loiselle D, Power A, et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart[J]. Am J Physiol Cell Physiol, 2014,307(6):C499- C507.
[7] Li B, Liu S, Miao L,et al. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy[J]. Exp Diabetes Res, 2012,2012:216512.
[8] Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations[J]. Mitochondrion, 2007, 7(Suppl):S78-S88.
[9] Koopman WJ, Distelmaier F, Smeitink JA,et al. OXPHOS mutations and neurodegeneration[J]. EMBO J, 2013,32(1):9-29.
[10] Nikitin AG, Lavrikova EY, Chistiakov DA. The heteroplasmic 15059G>A mutation in the mitochondrial cytochrome b gene and essential hypertension in type 2 diabetes[J], Diabetes Metab Syndr,2012,6(3):150-156.
[11] Kofler B, Mueller EE, Eder W, et al. Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study[J]. BMC Med Genet,2009,10:35.
[12] Chen J, Gusdon AM, Mathews CE. Role of genetics in resistance to type 1 diabetes[J]. Diabetes Metab Res Rev,2011,27(8):849-853.
[13] Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One,2014,9(8):e104771.
[14] Bouderba S, Sanz MN,Sánchez-Martín C, et al. Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model[J]. Exp Diabetes Res,2012,2012:430176.
[15] Kuo TH, Giacomelli F, Wiener J, et al. Pyruvate dehydrogenase activity in cardiac mitochondria from genetically diabetic mice[J]. Diabetes,1985, 34(11): 1075-1081.
[16] Boudina S, Bugger H, Sena S, et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart[J]. Circulation, 2009,119(9): 1272-1283.
[17] Martinet W, Knaapen MW, Kockx MM, et al. Autophagy in cardiovascular disease[J]. Trends Mol Med,2007,13(11):482-491.
[18] HanZ, Cao J, Song D, et al. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice[J]. PLoS One,2014,9(1):e86838.
[19] Zhao Y, Zhang L, Qiao Y, et al. Heme oxygenase-1 revents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy[J]. PLoS One,2013,8(9):e75927.
[20] Xu X, Kobayashi S, Chen K, et al.Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes[J].J Biol Chem,2013,288(25):18077-18092.
[21] Guo R, Zhang Y, Turdi S,et al. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy[J]. Biochim Biophys Acta, 2013,1832(8):1136-1148.
[22] Xu X, Hua Y,Zhang Y,et al. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation[J]. J Mol Cell Biol,2013,5(1):61-63.
[23] Okazaki T, Otani H, Shimazu T, et al. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart[J]. Free Radic Res,2011,45(10):1173-1183.
[24] Youle RJ, Narendra DP. Mechanisms of mitophagy[J].Nat Rev Mol Cell Biol,2011,12(1):9-14.
[25] Ferreira R,Guerra G, Padrao AI, et al. Lipidomic characterization of streptozotocin-induced heart mitochondrial dysfunction[J]. Mitochondrion,2013, 13(6):762-771.
[26] Yin H,Zhu M. Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis,mitochondrial dysfunction and human diseases[J]. Free Radic Res,2012,46(8):959-974.

相似文献/References:

[1]丁娟,刘地川.心力衰竭与线粒体功能障碍的研究进展[J].心血管病学进展,2016,(1):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
 DING Juan,LIU Dichuan.Research Progress of Heart Failure and Mitochondrial Dysfunction[J].Advances in Cardiovascular Diseases,2016,(6):84.[doi:10.16806/j.cnki.issn.1004-3934.2016.01.022]
[2]王静娜,侯瑞田,史亦男,等.糖尿病心肌病发病机制及病理改变研究进展[J].心血管病学进展,2016,(4):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
 WANG Jingna,HOU Ruitian,SHI Yinan,et al.Research Progress on Pathogenesis and Pathological Changes of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2016,(6):412.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.022]
[3]朱月红,戴启明.糖尿病心肌病的内质网病变机制及干预[J].心血管病学进展,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
 ZHU Yuehong,DAI Qiming.Advance of Mechanism and Intervention of Endoplasmic Reticulum in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2015,(6):738.[doi:10.3969/j.issn.1004-3934.2015.06.021]
[4]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[5]武韧 常贵全 孙凤起 李鸿珠.硫化氢对糖尿病心肌病的保护作用[J].心血管病学进展,2021,(1):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 WU Ren,CHANG Guiquan,SUN Fengqi,et al.Protective Effect of Hydrogen Sulfide in Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(6):52.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[6]宋元秀 崔鸣.线粒体动力学异常与相关心血管疾病[J].心血管病学进展,2021,(2):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
 SONG Yuanxiu,CUI Ming.Correlation Between Mitochondrial Dynamics and Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(6):162.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.017]
[7]马韵之 李剑 周鹏.糖尿病心肌病血清生物标志物研究进展[J].心血管病学进展,2021,(5):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
 Serum Biomarkers of Diabetic Cardiomyopathy.[J].Advances in Cardiovascular Diseases,2021,(6):392.[doi:10.16806/j.cnki.issn.1004-3934.2021.05.002]
[8]李艳鹏 马依彤.糖尿病心肌病治疗策略的研究进展[J].心血管病学进展,2022,(9):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
 LI Yanpeng,MA Yitong.Treatment Strategies for Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2022,(6):795.[doi:10.16806/j.cnki.issn.1004-3934.2022.09.007]
[9]曹兴丹 陈子仪 宋小刚 张玉秀 陈敏 汤吉超 李萍萍 陈永清 荆哲.EMRE在高糖环境中的变化对心肌细胞凋亡机制的研究[J].心血管病学进展,2022,(10):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
 CAO XingdanCHEN ZiyiSONG XiaogangZHANG YuxiuCHEN MinTANG JichaoLI PingpingCHEN YongqingJING Zhe.Effect of High Glucose-Induced EMRE Expressions Changes on?yocardial Apoptosis[J].Advances in Cardiovascular Diseases,2022,(6):953.[doi:10.16806/j.cnki.issn.1004-3934.2022.10.020]
[10]林佳音 王莉莉 于小晴.胰高血糖素样肽-1受体激动剂对糖尿病心肌病的影响[J].心血管病学进展,2023,(11):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]
 LIN Jiayin,WANG Lili,YU Xiaoqing.Effect of Glucagon-Like Peptide-1 Receptor Agonist on Diabetes Cardiomyopathy[J].Advances in Cardiovascular Diseases,2023,(6):1024.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.015]

备注/Memo

备注/Memo:
基金项目:新疆维吾尔自治区自然科学基金(2012211A033) 作者简介:杨沫(1990—),在读硕士,主要从事心肌病相关研究。Email:momo90126@yahoo.cn 通信作者:姜文锡(1972—),主任医师,博士,主要从事高血压相关研究。Email: jiangwenxi777@hotmail.com
更新日期/Last Update: 2016-06-20