参考文献/References:
[1] Higashikuni Y,Liu W,Numata G,et al. NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload[J]. Circulation,2023,147(4):338-355.
[2] Brasil TFS,Lopes-Azevedo S,Belém-Filho IJA,et al. The dorsomedial hypothalamus is involved in the mediation of autonomic and neuroendocrine responses to restraint stress[J]. Front Pharmacol,2020,10:1547.
[3] Wang M,Yang Y,Xu Y. Brain nuclear receptors and cardiovascular function[J]. Cell Biosci,2023,13(1):14.
[4] Tahsili-fahadan P,Geocadin RG. Heart-brain axis:effects of neurologic injury on cardiovascular function[J]. Circ Res,2017,120(3):559-572.
[5] Carnevale D. Neuroimmune axis of cardiovascular control:mechanisms and therapeutic implications[J]. Nat Rev Cardiol,2022,19(6):379-394.
[6] Liu W,Zhang X,Wu Z,et al. Brain-heart communication in health and diseases[J]. Brain Res Bull,2022,183:27-37.
[7] Mcclellan KM,Parker KL,Tobet S. Development of the ventromedial nucleus of the hypothalamus[J]. Front Neuroendocrinol,2006,27(2):193-209.
[8] López-González L,Martínez-de-la-Torre M,Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus:genoarchitectonic analysis in the mouse[J]. Brain Struct Funct,2023,228(2):537-576.
[9] Hetherington AW,Ranson SW. The relation of various hypothalamic lesions to adiposity in the rat[J]. J Comp Neurol,1942,76(3) :475-499.
[10] Yang T,Bayless DW,Wei Y,et al. Hypothalamic neurons that mirror aggression[J]. Cell,2023,186(6):1195-1211.e19.
[11] Lin D,Boyle MP,Dollar P,et al. Functional identification of an aggression locus in the mouse hypothalamus[J]. Nature,2011,470(7333):221-226.
[12] Yu Y,Wei SG,Weiss RM,et al. Silencing epidermal growth factor receptor in hypothalamic paraventricular nucleus reduces extracellular signal-regulated kinase 1 and 2 signaling and sympathetic excitation in heart failure rats[J]. Neuroscience,2021,463:227-237.
[13] Lo L,Yao S,Kim DW,et al. Connectional architecture of a mouse hypothalamic circuit node controlling social behavior[J]. Proc Natl Acad Sci U S A,2019,116(15):7503-7512.
[14] Zhou Y,Liu Z,Liu Z,et al. Ventromedial hypothalamus activation aggravates hypertension myocardial remodeling through the sympathetic nervous system[J]. Front Cardiovasc Med,2021,8:737135.
[15] Duan W,Ye P,Leng YQ,et al. Oxidative stress in the RVLM mediates sympathetic hyperactivity induced by circadian disruption[J]. Neurosci Lett,2022,791:136917.
[16] Guyenet PG,Stornetta RL. Rostral ventrolateral medulla,retropontine region and autonomic regulations[J]. Auton Neurosci,2022,237:102922.
[17] Vaseghi M,Barwad P,Malavassi Corrales FJ,et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias[J]. J Am Coll Cardiol,2017,69(25):3070-3080.
[18] Wang Y,Jiang W,Chen H,et al. Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model[J]. Front Cardiovasc Med,2021,8:668387.
[19] Huang B,Yu L,Scherlag BJ,et al. Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion[J]. J Cardiovasc Electrophysiol,2014,25(11):1249-1256.
[20] Yu L,Zhou L,Cao G,et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol,2017,70(22):2778-2790.
[21] Zhou Z,Liu C,Xu S,et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model [J]. Basic Res Cardiol,2022,117(1):34.
[22] López M. Hypothalamic AMPK as a possible target for energy balance-related diseases [J]. Trends Pharmacol Sci,2022,43(7):546-556.
[23] Martínez de Morentin PB,González-García I, Martins L,et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK[J]. Cell Metab,2014,20(1):41-53.
[24] Martínez-Sánchez N,Seoane-Collazo P,Contreras C,et al. Hypothalamic AMPK-ER Stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance [J]. Cell Metab,2017,26(1):212-229.e12.
[25] Seoane-Collazo P,Roa J,Rial-Pensado E,et al. SF1-specific AMPKα1 deletion protects against diet-induced obesity[J]. Diabetes,2018,67(11):2213-2226.
[26] Milbank E,Dragano NRV,González-García I,et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation[J]. Nat Metab,2021,3(10):1415-1431.
[27] Satoh N,Ogawa Y,Katsuura G,et al. Sympathetic activation of leptin via the ventromedial hypothalamus:leptin-induced increase in catecholamine secretion[J]. Diabetes,1999,48(9):1787-1793.
[28] Knoedler JR,Inoue S,Bayless DW,et al. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior[J]. Cell,2022,185(4):654-671.e22.
[29] Karigo T,Kennedy A,Yang B,et al. Distinct hypothalamic control of same-and opposite-sex mounting behaviour in mice[J]. Nature,2021,589(7841):258-263.
[30] Zimmerman CA,Leib DE,Knight ZA. Neural circuits underlying thirst and fluid homeostasis[J]. Nat Rev Neurosci,2017,18(8):459-469.
[31] Leistner C,Menke A. Hypothalamic-pituitary-adrenal axis and stress[J]. Handb Clin Neurol,2020,175:55-64.
[32] Pelliccia F,Kaski JC,Crea F,et al. Pathophysiology of takotsubo syndrome[J]. Circulation,2017,135(24):2426-2441.
[33] Singh T,Khan H,Gamble DT,et al. Takotsubo syndrome:pathophysiology,emerging concepts, and clinical implications[J]. Circulation,2022,145(13):1002-1019.
[34] Vlasov K,Van Dort CJ,Solt K. Optogenetics and chemogenetics[J]. Methods Enzymol,2018,603:181-196.
[35] Zengin G,Topak OZ,Atesci O,et al. The efficacy and safety of transcranial magnetic stimulation in treatment-resistant bipolar depression[J]. Psychiatr Danub,2022,34(2):236-244.
[36] Jannati A,Oberman LM,Rotenberg A,et al. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation[J]. Neuropsychopharmacology,2023,48(1):191-208.
相似文献/References:
[1]那丞 黄织春.干预自主神经对心房颤动影响的研究进展[J].心血管病学进展,2021,(1):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
NA Cheng,HUANG Zhichun.Effect of Autonomic Nerve Intervention on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(11):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[2]郭辅定 殷铭 赖燕秋 江洪.蒽环类药物相关心血管疾病与自主神经调控展望[J].心血管病学进展,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
GUO Fuding,YIN Ming,LAI Yanqiu,et al.Anthracycline-induced Cardiovascular Diseases and Autonomic Nervous Regulation[J].Advances in Cardiovascular Diseases,2021,(11):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
[3].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(11):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[4]胡睿杰 江洪.昼夜节律与心脏代谢研究进展[J].心血管病学进展,2023,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
HU Ruijie,JIANG Hong.Circadian Rhythm and Cardiac Metabolism[J].Advances in Cardiovascular Diseases,2023,(11):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
[5]李锐 江洪.神经免疫相互作用与心律失常的研究进展[J].心血管病学进展,2023,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]
LI Rui,JIANG Hong.Neuroimmune Interaction and Arrhythmia[J].Advances in Cardiovascular Diseases,2023,(11):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]