[1]刘子韩 余锂镭.下丘脑腹内侧核 影响心脏自主神经的研究进展[J].心血管病学进展,2023,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
 LIU Zihan,YU Lilei.Ventromedial Hypothalamic Nucleus and Cardiac A utonomic Nervous System[J].Advances in Cardiovascular Diseases,2023,(11):1015.[doi:10.16806/j.cnki.issn.1004-3934.2023.11.013]
点击复制

下丘脑腹内侧核 影响心脏自主神经的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年11期
页码:
1015
栏目:
综述
出版日期:
2023-11-25

文章信息/Info

Title:
Ventromedial Hypothalamic Nucleus and Cardiac A utonomic Nervous System
作者:
刘子韩 余锂镭
(武汉大学人民医院心内科 自主神经调控湖北省重点实验室 武汉大学心脏自主神经研究中心 武汉大学心血管病研究所 心血管病湖北省重点实验室,湖北 武汉 430060)
Author(s):
LIU ZihanYU Lilei
(Department of Cardiology, Renmin Hospital of Wuhan University;Hubei Key Laboratory of Autonomic Nervous System Modulation;Cardiac Autonomic Nervous System Research Center of Wuhan University;Cardiovascular Research Institute,Wuhan University; Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)
关键词:
下丘脑腹内侧核团自主神经系统心血管系统下丘脑-垂体-肾上腺轴
Keywords:
Ventromedial hypothalamic nucleusAutonomic nervous systemCardiovascular systemHypothalamus-pituitary-adrenal axis
DOI:
10.16806/j.cnki.issn.1004-3934.2023.11.013
摘要:
心脏接受自主神经系统的支配和调控,且交感 神经过度激活是心血管疾病进展的关键触发因素。来自下丘脑的心血管自主神经中枢核团可以通过调控外周自主神经系统活性和功能,进而调节心脏生理功能并改善心血管疾病的预后。下丘脑腹内侧核是调控代谢和情绪的重要核团之一,其与下丘脑中的心血管中枢核团及自主神经系统之间存在密切联系,理解三者之间作用关系有助于对脑心交互相关的心血管疾病的发病机制的理解,明确下丘脑腹内侧核调控心脏自主神经的信号通路和神经递质。现就下丘脑腹内侧核对心脏自主神经系统的调控作用,可能涉及的神经投射及分子信号通路以及调控策略进行综述。
Abstract:
The heart is innervated and regulated by the autonomic nervous system,and excessive activation of the sympathetic nervous system is a key trigger factor for the progression of cardiovascular disease. Cardiovascular autonomic central nuclei in the hypothalamus can regulate cardiac physiological functions and improve the prognosis of cardiovascular diseases by regulating the activity and function of the peripheral autonomic nervous system. Ventromedial hypothalamic nucleus(VMH) is one of the most important nuclei that regulate metabolism and emotion. It is closely related to the cardiovascular central nucleus and the autonomic nervous system in the hypothalamus. Understanding the relationship between the three can help to understand the pathogenesis of cardiovascular diseases related to brain-heart crosstalk,and clarify the signaling pathways and neurotransmitters of the VMH in regulating cardiac autonomic nervous system. This article reviews the regulatory role of VMH on the cardiac autonomic nervous system,the possible involved neural projections,molecular signaling pathways and regulatory strategies.

参考文献/References:

[1] Higashikuni Y,Liu W,Numata G,et al. NLRP3 inflammasome activation through heart-brain interaction initiates cardiac inflammation and hypertrophy during pressure overload[J]. Circulation,2023,147(4):338-355.

[2] Brasil TFS,Lopes-Azevedo S,Belém-Filho IJA,et al. The dorsomedial hypothalamus is involved in the mediation of autonomic and neuroendocrine responses to restraint stress[J]. Front Pharmacol,2020,10:1547.

[3] Wang M,Yang Y,Xu Y. Brain nuclear receptors and cardiovascular function[J]. Cell Biosci,2023,13(1):14.

[4] Tahsili-fahadan P,Geocadin RG. Heart-brain axis:effects of neurologic injury on cardiovascular function[J]. Circ Res,2017,120(3):559-572.

[5] Carnevale D. Neuroimmune axis of cardiovascular control:mechanisms and therapeutic implications[J]. Nat Rev Cardiol,2022,19(6):379-394.

[6] Liu W,Zhang X,Wu Z,et al. Brain-heart communication in health and diseases[J]. Brain Res Bull,2022,183:27-37.

[7] Mcclellan KM,Parker KL,Tobet S. Development of the ventromedial nucleus of the hypothalamus[J]. Front Neuroendocrinol,2006,27(2):193-209.

[8] López-González L,Martínez-de-la-Torre M,Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus:genoarchitectonic analysis in the mouse[J]. Brain Struct Funct,2023,228(2):537-576.

[9] Hetherington AW,Ranson SW. The relation of various hypothalamic lesions to adiposity in the rat[J]. J Comp Neurol,1942,76(3) :475-499.

[10] Yang T,Bayless DW,Wei Y,et al. Hypothalamic neurons that mirror aggression[J]. Cell,2023,186(6):1195-1211.e19.

[11] Lin D,Boyle MP,Dollar P,et al. Functional identification of an aggression locus in the mouse hypothalamus[J]. Nature,2011,470(7333):221-226.

[12] Yu Y,Wei SG,Weiss RM,et al. Silencing epidermal growth factor receptor in hypothalamic paraventricular nucleus reduces extracellular signal-regulated kinase 1 and 2 signaling and sympathetic excitation in heart failure rats[J]. Neuroscience,2021,463:227-237.

[13] Lo L,Yao S,Kim DW,et al. Connectional architecture of a mouse hypothalamic circuit node controlling social behavior[J]. Proc Natl Acad Sci U S A,2019,116(15):7503-7512.

[14] Zhou Y,Liu Z,Liu Z,et al. Ventromedial hypothalamus activation aggravates hypertension myocardial remodeling through the sympathetic nervous system[J]. Front Cardiovasc Med,2021,8:737135.

[15] Duan W,Ye P,Leng YQ,et al. Oxidative stress in the RVLM mediates sympathetic hyperactivity induced by circadian disruption[J]. Neurosci Lett,2022,791:136917.

[16] Guyenet PG,Stornetta RL. Rostral ventrolateral medulla,retropontine region and autonomic regulations[J]. Auton Neurosci,2022,237:102922.

[17] Vaseghi M,Barwad P,Malavassi Corrales FJ,et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias[J]. J Am Coll Cardiol,2017,69(25):3070-3080.

[18] Wang Y,Jiang W,Chen H,et al. Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model[J]. Front Cardiovasc Med,2021,8:668387.

[19] Huang B,Yu L,Scherlag BJ,et al. Left renal nerves stimulation facilitates ischemia-induced ventricular arrhythmia by increasing nerve activity of left stellate ganglion[J]. J Cardiovasc Electrophysiol,2014,25(11):1249-1256.

[20] Yu L,Zhou L,Cao G,et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias[J]. J Am Coll Cardiol,2017,70(22):2778-2790.

[21] Zhou Z,Liu C,Xu S,et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model [J]. Basic Res Cardiol,2022,117(1):34.

[22] López M. Hypothalamic AMPK as a possible target for energy balance-related diseases [J]. Trends Pharmacol Sci,2022,43(7):546-556.

[23] Martínez de Morentin PB,González-García I, Martins L,et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK[J]. Cell Metab,2014,20(1):41-53.

[24] Martínez-Sánchez N,Seoane-Collazo P,Contreras C,et al. Hypothalamic AMPK-ER Stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance [J]. Cell Metab,2017,26(1):212-229.e12.

[25] Seoane-Collazo P,Roa J,Rial-Pensado E,et al. SF1-specific AMPKα1 deletion protects against diet-induced obesity[J]. Diabetes,2018,67(11):2213-2226.

[26] Milbank E,Dragano NRV,González-García I,et al. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation[J]. Nat Metab,2021,3(10):1415-1431.

[27] Satoh N,Ogawa Y,Katsuura G,et al. Sympathetic activation of leptin via the ventromedial hypothalamus:leptin-induced increase in catecholamine secretion[J]. Diabetes,1999,48(9):1787-1793.

[28] Knoedler JR,Inoue S,Bayless DW,et al. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior[J]. Cell,2022,185(4):654-671.e22.

[29] Karigo T,Kennedy A,Yang B,et al. Distinct hypothalamic control of same-and opposite-sex mounting behaviour in mice[J]. Nature,2021,589(7841):258-263.

[30] Zimmerman CA,Leib DE,Knight ZA. Neural circuits underlying thirst and fluid homeostasis[J]. Nat Rev Neurosci,2017,18(8):459-469.

[31] Leistner C,Menke A. Hypothalamic-pituitary-adrenal axis and stress[J]. Handb Clin Neurol,2020,175:55-64.

[32] Pelliccia F,Kaski JC,Crea F,et al. Pathophysiology of takotsubo syndrome[J]. Circulation,2017,135(24):2426-2441.

[33] Singh T,Khan H,Gamble DT,et al. Takotsubo syndrome:pathophysiology,emerging concepts, and clinical implications[J]. Circulation,2022,145(13):1002-1019.

[34] Vlasov K,Van Dort CJ,Solt K. Optogenetics and chemogenetics[J]. Methods Enzymol,2018,603:181-196.

[35] Zengin G,Topak OZ,Atesci O,et al. The efficacy and safety of transcranial magnetic stimulation in treatment-resistant bipolar depression[J]. Psychiatr Danub,2022,34(2):236-244.

[36] Jannati A,Oberman LM,Rotenberg A,et al. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation[J]. Neuropsychopharmacology,2023,48(1):191-208.

相似文献/References:

[1]那丞 黄织春.干预自主神经对心房颤动影响的研究进展[J].心血管病学进展,2021,(1):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 NA Cheng,HUANG Zhichun.Effect of Autonomic Nerve Intervention on Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2021,(11):30.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[2]郭辅定 殷铭 赖燕秋 江洪.蒽环类药物相关心血管疾病与自主神经调控展望[J].心血管病学进展,2021,(3):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
 GUO Fuding,YIN Ming,LAI Yanqiu,et al.Anthracycline-induced Cardiovascular Diseases and Autonomic Nervous Regulation[J].Advances in Cardiovascular Diseases,2021,(11):248.[doi:10.16806/j.cnki.issn.1004-3934.20 21.03.014]
[3].肠-脑轴与心血管疾病的研究进展[J].心血管病学进展,2022,(7):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
 TAN Wuping,W ANG Meng,ZHOU Xiaoya.Gut-Brain Axis and Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2022,(11):595.[doi:10.16806/j.cnki.issn.1004-3934.2022.07.000]
[4]胡睿杰 江洪.昼夜节律与心脏代谢研究进展[J].心血管病学进展,2023,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
 HU Ruijie,JIANG Hong.Circadian Rhythm and Cardiac Metabolism[J].Advances in Cardiovascular Diseases,2023,(11):158.[doi:10.16806/j.cnki.issn.1004-3934.2023.02.014]
[5]李锐 江洪.神经免疫相互作用与心律失常的研究进展[J].心血管病学进展,2023,(3):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]
 LI Rui,JIANG Hong.Neuroimmune Interaction and Arrhythmia[J].Advances in Cardiovascular Diseases,2023,(11):247.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.013]

更新日期/Last Update: 2023-12-13