[1]李秋 李蔚华.TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
 LI Qiu,LI Weihua.Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):743.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.016]
点击复制

TRIM蛋白家族在心肌缺血再灌注损伤中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年8期
页码:
743
栏目:
综述
出版日期:
2023-08-25

文章信息/Info

Title:
Research Progress of TRIM Family in Myocardial Ischemia Reperfusion Injury
作者:
李秋 李蔚华
(华中科技大学同济医学院附属梨园医院心血管内科,湖北 武汉 430077)
Author(s):
LI Qiu LI Weihua
(Department of Cardiology,Liyuan Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430077,Hube China)
关键词:
TRIM蛋白家族心肌缺血再灌注损伤心脏疾病
Keywords:
Tripartite motif family proteinMyocardial ischemia reperfusion injuryCardiac disease
DOI:
10.16806/j.cnki.issn.1004-3934.2023.08.016
摘要:
及时进行血运重建以恢复冠状动脉血流,是急性心肌梗死患者治疗的关键,但血流的突然恢复也会给缺血心肌带来更严重的二次损伤,至今尚未找到治疗心肌缺血再灌注损伤(MIRI)的有效方法。近年的研究发现,三方基序(TRIM)蛋白家族能够介导氧化应激、细胞死亡及炎症等生物过程,同时还具有调节缺血性处理与促进膜修复的心脏保护功能,在MIRI中起着不可忽视的作用。现就TRIM蛋白家族对MIRI的作用及所涉及的分子调控机制进行综述。
Abstract:
Timely recovery of coronary blood flow is the key treatment for Patients with acute myocardial infarction,but suddenly recovery of blood flow can also cause more serious damage to the ischemic myocardium. The effective treatments of myocardial ischemia reperfusion injury have not been found. Recent research has found that tripartite motif (TRIM) family protein can not only omediate the biological processes of oxidative stress ,necrocytosis and inflammation,but also participates in conditioning with cardiac ischemic and membrane repair,which plays an important role in MIRI. In this article,the function of TRIM family proteins in MIRI and the mechanism of molecular regulation are summarized,and focuses on whether TRIM can be used as a new target for anti-MIRI

参考文献/References:

[1] Hausenloy DJ,Chilian W,Crea F,et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury:a target for cardioprotection[J]. Cardiovasc Res,2019,115(7):1143-1155.

[2] Kalogeris T,Baines CP,Krenz M,et al. Ischemia/Reperfusion[J]. Compr Physiol,2016,7(1):113-170.

[3] Davidson SM,Ferdinandy P,Andreadou I,et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week[J]. J Am Coll Cardiol ,2019,73(1):89-99.

[4] Zhong W,Benissan-Messan DZ,Ma J,et al. Cardiac effects and clinical applications of MG53[J]. Cell Biosci,2021,11(1):115.

[5] Li Y,Meng Q,Wang L,et al.TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53[J]. Biochem Biophys Res Commun,2021,557:127-134.

[6] Esposito D,Koliopoulos MG,Rittinger K.Structural determinants of TRIM protein function[J]. Biochem Soc Trans,2017,45(1):183-191.

[7] Bell JL,Malyukova A,Holien JK,et al.TRIM16 acts as an E3 ubiquitin ligase and can heterodimerize with other TRIM family members[J]. PLoS One,2012,7(5):e37470.

[8] Sanchez JG,Okreglicka K,Chandrasekaran V,et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer[J]. Proc Natl Acad Sci USA,2014,111(7):2494-2499.

[9] Hatakeyama S. TRIM proteins and cancer[J]. Nat Rev Cancer,2011,11(11):792-804.

[10] Sparrer K,Gack MU.TRIM proteins:new players in virus-induced autophagy[J]. PLoS Pathog,2018,14(2):e1006787.

[11] Alloush J,Weisleder N. TRIM proteins in therapeutic membrane repair of muscular dystrophy[J]. JAMA Neurol,2013,70(7):928-931.

[12] Kudryashova E,Kudryashov D,Kramerova I,et al. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin[J]. J Mol Biol,2005,354(2):413-424.

[13] Borlepawar A,Rangrez AY,Bernt A,et al. TRIM24 protein promotes and TRIM32 protein inhibits cardiomyocyte hypertrophy via regulation of dysbindin protein levels[J]. J Biol Chem,2017,292(24):10180-10196.

[14] Lorenzana-Carrillo MA,Gopal K,Byrne NJ,et al. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure[J]. Sci Transl Med,2022,14(669):m3565.

[15] Jennings RB.Historical perspective on the pathology of myocardial ischemia/reperfusion injury[J]. Circ Res,2013,113(4):428-438.

[16] Hernandez-Deviez DJ,Howes MT,Laval SH,et al. Caveolin regulates endocytosis of the muscle repair protein,dysferlin[J]. J Biol Chem,2008,283(10):6476-6488.

[17] Cai C,Masumiya H,Weisleder N,et al. MG53 nucleates assembly of cell membrane repair machinery[J]. Nat Cell Biol,2009,11(1):56-64.

[18] Wang X,Xie W,Zhang Y,et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair[J]. Circ Res,2010,107(1):76-83.

[19] Cai C,Lin P,Zhu H,et al. Zinc binding to MG53 protein facilitates repair of injury to cell membranes[J]. J Biol Chem,2015,290(22):13830-13839.

[20] Garcia N,Zazueta C,Aguilera-Aguirre L. Oxidative stress and inflammation in cardiovascular disease[J]. Oxid Med Cell Longev,2017,2017:5853238.

[21] Dang X,Qin Y,Gu C,et al. Knockdown of tripartite motif 8 protects H9C2 cells against hypoxia/reoxygenation-induced injury through the activation of PI3K/Akt signaling pathway[J]. Cell Transplant,2020,29:2138941951.

[22] Lu B,Li J,Gui M,et al. Salvianolic acid B inhibits myocardial I/R-induced ROS generation and cell apoptosis by regulating the TRIM8/GPX1 pathway[J]. Pharm Biol,2022,60(1):1458-1468.

[23] Jena KK,Kolapalli SP,Mehto S,et al. TRIM16 controls turnover of protein aggregates by modulating NRF2,ubiquitin system,and autophagy:implication for tumorigenesis[J]. Mol Cell Oncol,2018,5(6):e1532251.

[24] Cui Q,Yan L.Tripartite motif-containing protein 16 protects against myocardial ischemia/reperfusion injury by affecting the Keap1/Nrf2 axis[J]. Cell Tissue Res,2021,386(2):349-363.

[25] Gumpper-Fedus K,Park KH,Ma H,et al. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress[J].Redox Biol,2022,54:102357.

[26] Zhang W,Zhang Y,Zhang H,et al. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling[J]. J Cell Physiol,2019,234(5):6529-6538.

[27] He F,Wu Z,Wang Y,et al. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2[J]. Cell Biol Int,2022,46(1):148-157.

[28] Zeng G,Lian C,Yang P,et al. E3-ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis[J]. Aging (Albany NY),2019,11(11):3536-3550.

[29] Dhuriya YK,Sharma D. Necroptosis:a regulated inflammatory mode of cell death[J]. J Neuroinflammation,2018,15(1):199.

[30] Wang Q,Park KH,Geng B,et al. MG53 inhibits necroptosis through ubiquitination-dependent RIPK1 degradation for cardiac protection following ischemia/reperfusion injury[J]. Front Cardiovasc Med,2022,9:868632.

[31] Algoet M,Janssens S,Himmelreich U,et al. Myocardial ischemia-reperfusion injury and the influence of inflammation[J]. Trends Cardiovasc Med,2022,S1050-1738(22):00029-9.

[32] Lu Z,Deng M,Ma G,et al. TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF-κB signalling pathway[J]. Peer J,2022,10:e13815.

[33] Ball DP,Taabazuing CY,Griswold AR,et al. Caspase-1 interdomain linker cleavage is required for pyroptosis[J]. Life Sci Alliance,2020,3(3): e202000664.

[34] Shi M,Su F,Dong Z,et al. TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling[J]. Biochem Biophys Res Commun,2022,632:122-128.

[35] Murry CE,Jennings RB,Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation,1986,74(5):1124-1136.

[36] Heusch G. Molecular basis of cardioprotection:signal transduction in ischemic pre-,post-, and remote conditioning[J]. Circ Res ,2015,116(4):674-699.

[37] Cao CM,Zhang Y,Weisleder N,et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning[J]. Circulation,2010,121(23):2565-2574.

[38] Shan D,Guo S,Wu HK,et al. Cardiac ischemic preconditioning promotes MG53 secretion through H2O2-activated protein kinase C-δ signaling[J]. Circulation,2020,142(11):1077-1091.

[39] Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol,2020,17(12):773-789.

[40] Zhang Y,Lv F,Jin L,et al. MG53 participates in ischaemic postconditioning through the RISK signalling pathway[J]. Cardiovasc Res,2011,91(1):108-115.

相似文献/References:

[1]张馨月 涂荣会.Toll样受体与心肌缺血再灌注损伤及其保护作用研究进展[J].心血管病学进展,2020,(2):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
 ZHANG Xinyue,TU Ronghui.Review Onprotective Effects of Toll-like Receptors on Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):172.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.018]
[2]张明 王敬萍.Nur77和GRP78与糖尿病心肌缺血再灌注损伤的关系研究[J].心血管病学进展,2020,(6):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
 ZHANG Ming Wang Jingping.Relationship between Nur77 and GRP78 and Myocardial Ischemia-reperfusion Injury in Diabetic Patients[J].Advances in Cardiovascular Diseases,2020,(8):571.[doi:10.16806/j.cnki.issn.1004-3934.2020.06.003]
[3]韩敏 朱兵 余嘉清 马依彤.程序性细胞死亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(10):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
 HAN MinZHU BingYU JiaqingMA Yitong.  Programmed Cell Death and Myocardial Ischemic Reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1069.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.017]
[4]郭双 邢栋 吕勃.程序性坏死、细胞焦亡与心肌缺血再灌注损伤[J].心血管病学进展,2020,(12):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
 GUO Shuang,XING Dong,LYU Bo.NecroptosisPyroptosis and Myocardial Ischemia-reperfusion Injury[J].Advances in Cardiovascular Diseases,2020,(8):1255.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.008]
[5]彭石 马茜钰 张丹 张兆元 张锦.铁死亡在心肌缺血再灌注损伤中的作用及靶向治疗研究进展[J].心血管病学进展,2022,(4):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
 PENG Shi,MA Qianyu,ZHANG Dan,et al.Role and Targeted Treatment of Ferroptosis?n Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):357.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.017]
[6]郭双 吕勃.细胞凋亡和程序性坏死在心肌缺血再灌注损伤中的作用研究[J].心血管病学进展,2022,(12):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
 GUO Shuang L YU Bo.The Role of Apoptosis and Necroptosis in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2022,(8):1148.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.020]
[7]叶宇恒 钱玲玲 王如兴 李库林.心肌缺血再灌注损伤中铁死亡的调控机制研究进展[J].心血管病学进展,2023,(5):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
 YE Yuheng,QIAN Lingling,WANG Ruxing,et al.Regulatory Mechanisms of Ferroptosis in Myocardial Ischemia Reperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):416.[doi:10.16806/j.cnki.issn.1004-3934.2023.05.008]
[8]李俊霖 韩虎魁 程攀科 李刚 陶剑虹.Foxp3+调节性T细胞与心肌缺血再灌注损伤概述[J].心血管病学进展,2023,(9):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
 LI Junlin,HAN Hukui,CHENG Panke,et al.Overview of Foxp3+ Regulatory T Cells and Myocardial Ischemia R eperfusion Injury[J].Advances in Cardiovascular Diseases,2023,(8):832.[doi:10.16806/j.cnki.issn.1004-3934.2023.09.015]
[9]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[10]热伊莱·开赛尔 谢翔.琥珀酸在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]
 Reyilai·Kaisaier,XIE Xiang.Succinic Acid and Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(8):722.[doi:10.16806/j.cnki.issn.1004-3934.202.08.011]

更新日期/Last Update: 2023-09-21