参考文献/References:
[1].Ernst LM,Puntes V. How does immunomodulatory nanoceria work?ROS and immunometabolism[J]. Front Immunol,2022,13:750175.
[2].Carrión-García CJ,Guerra-Hernández EJ,García-Villanova B,et al. Plasma Non-Enzymatic Antioxidant Capacity (NEAC) in relation to dietary NEAC,Nutrient antioxidants andinflammation-related biomarkers[J]. Antioxidants (Basel),2020,9(4):301.
[3].Matondo A,Kim SS. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease[J]. J Drug Targeting,2018,26(1):1-8.
[4].Benfeito S,Oliveira C,Soares P,et al. Antioxidant therapy:still in search of the ’magic bullet’[J]. Mitochondrion,2013,13(5):427-435.
[5].Amekura S,Shiozawa K,Kiryu C,et al. Edaravone,a scavenger for multiple reactive oxygen species,reacts with singlet oxygen to yield 2-oxo-3-(phenylhydrazono)-butanoic acid[J].J Clin Biochem Nutr,2022,70(3):240-247.
[6].Rotaru A,T?rtea GC,Ianc?u M. The neuroprotective role of alpha thioctic acid and vitamin B complex in diabetic neuropathy-an experimental study[J]. Curr Health Sci J,2020,46 (2):150-155.
[7].Mou X ,Wu Q,Zhang Z,et al. Nanozymes for regenerative medicine[J]. Small Methods,2022,6(11):e2200997.
[8].Xu B,Li S,Zheng L,et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy[J]. Adv Mater,2022,34(15): e2107088.
[9].Xue Y,Balmuri SR,P atel A,et al. Synthesis,physico-chemical characterization,and antioxidant effect of PEGylated cerium oxide nanoparticles[J]. Drug Deliv Transl Res,2018,8(2):357-367.
[10].Singh S,K umar U,G ittess D,et al.Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization[J] . J Biomater Appl,2021,36(5): 834-842.
[11].Li Y,Li Y,Bai Y,et al. High catalytic efficiency from Er3+-doped CeO2- x nanoprobes for in vivo acute oxidative damage and inflammation therapy[J]. J Mater Chem B,2020,8 (37):8634-8643.
[12].Hasanzadeh L,Kazemi Oskuee R,Sadri K,et al. Green synthesis of labeled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice[J] . Life Sci,2018,212:233-240.
[13].Charbgoo F,A hmad MB,D arroudi M. Cerium oxide nanoparticles: green synthesis and biological applications[J]. Int J Nanomedicine,2017,12: 1401-1413.
[14].Yu Y,Zhao S,Gu D,et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway[J]. Nanoscale,2022,14 (7):2628-2637.
[15].Saleh H,Nassar AMK,Noreldin AE,et al. Chemo-protective potential of cerium oxide nanoparticles against fipronil-induced oxidative stress,apoptosis,inflammation and reproductive dysfunction in male white albino rats[J]. Molecules,2020,25 (15):3479.
[16].Liemburg-Apers DC,Willems PH,Koopman WJ,et al. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism[J]. Arch Toxicol,2015,89(8):1209-1226.
[17].Díaz HS,Ríos-Gallardo A,Ortolani D,et al. Lipid-encapsuled grape tannins prevent oxidative-stress-induced neuronal cell death, intracellular ROS accumulation and inflammation[J]. Antioxidants(Basel),2022,11(10):1928.
[18].Zheng Q,Fang Y,Zeng L,et al. Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization[J]. J Mater Chem B,2019, 7(43):6759-6769.
[19].Wasef L,Nassar AMK,El-Sayed YS,et al. The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis[J]. Sci Rep,2021,11(1):1310.
[20].Zito C,Manganaro R,Cusmà Piccione M,et al. Anthracyclines and regional myocardial damage in breast cancer patients. A multicentre study from the Working Group on Drug Cardiotoxicity and Cardioprotection, Italian Society of Cardiology (SIC)[J]. Eur Heart J Cardiovasc Imaging,2021,22(4):406-415.
[21].Ugov?ek S,Rehberger Likozar A,Finderle S,et al. TNF-α predicts endothelial function and number of CD34+ cells after stimulation with G-CSF in patients with advanced heart failure[J]. J Cardiovasc Dev Dis,2022,9(8):281.
[22].Bilchick K,Kothari H,Narayan A,et al. Cardiac resynchronization therapy reduces expression of inflammation-promoting genes related to interleukin-1β in heart failure[J]. Cardiovascr Res,2020,116(7):1311-1322.
[23].Xu Y,Hu Y,Geng Y,et al. Pentraxin 3 depletion (PTX3 KD) inhibited myocardial fibrosis in heart failure after myocardial infarction[J]. Aging,2022,14 (9):4036-4049.
[24].Liu Z ,Zhang Z,Zou T,et al. Discovery of novel dihydropyrazole-stilbene derivatives for ameliorating heart failure through modulation of p38/NF-κB signaling pathway[J]. Bioorg Chem,2022,129:106206.
[25].Zhang J,Jiang S,Lu C,et al. SYVN1/GPX5 axis affects ischemia/reperfusion induced apoptosis of AC16 cells by regulating ROS generation[J]. Am J Transl Res,2021,13 (5):4055-4067.
[26].Wang C,Chen J,Wang M,et al. Role of the TRPM4 channel in mitochondrial function,calcium release,and ROS generation in oxidative stress[J]. Biochem Biophys Res Commun,2021,5 75:96-98.
[27].Casals E,Zeng M,Parra-Robert M,et al. Cerium oxide nanoparticles:advances in biodistribution,toxicity,and preclinical exploration[J]. Small,2020,16 (20):e1907322.
[28].Liguori I,Russo G,Curcio F,et al. Oxidative stress,aging,and diseases[J]. Clin Interv Aging, 2018,13:757 -772.
[29].Pagliari F,Mandoli C,Forte G,et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress[J]. ACS Nano,2012,6(5):3767-3775.
[30].Mohamed HRH. Acute oral administration of cerium oxide nanoparticles suppresses lead acetate-induced genotoxicity,inflammation,and ROS generation in mice renal and cardiac tissues[J]. Biol Trace Elem Res,2022,200 (7):3284-3293.
[31].Nassar SZ,Hassaan PS,Abdelmonsif DA,et al. Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension:A possible implication of endothelin-1[J]. Life Sci,2018,201:89-101.
[32].Kumari P ,Saifi MA,Khurana A ,et al. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling[J]. J Trace Elem Med Biol,2018,50:198-208.
[33].Sangomla S ,Saifi MA,Khurana A ,et al. Nanoceria ameliorates doxorubicin induced cardiotoxicity:Possible mitigation via reduction of oxidative stress and inflammation[J]. J Trace Elem Med Biol,2018,47:53-62.
[34].El Shaer SS,Salaheldin TA,Saied NM,et al. In vivo ameliorative effect of cerium oxide nanoparticles in isoproterenol-induced cardiac toxicity[J]. Exp Toxicol Pathol,2017,69(7):435-441.
[35].Niu J,Azfer A,Rogers LM,et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy[J]. Cardiovasc Res,2007,73(3):549-559.
[36].Jain A,Behera M,Mahapatra C,et al. Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch[J]. Mater Sci Eng C Mater Biol Appl,2021,118:111416.
相似文献/References:
[1]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(7):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(7):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(7):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
[5]王瑞钰,彭琳茜,李灵姣,等.硫氧还蛋白系统与高血压的研究进展[J].心血管病学进展,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
WANG RuiyuPENG LinqianLI LingjiaoXUE QianWANG LiangDU WeiHUANG Jing.Thioredoxin System in Hypertension[J].Advances in Cardiovascular Diseases,2020,(7):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
[6]李丹 徐蔓 唐其柱.Nox5在心血管疾病中的作用[J].心血管病学进展,2020,(12):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
Li Dan,Xu Man,Tang Qizhu.The Role of Nox5 in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
[7]李海通 闫莉.甲状腺疾病相关肺动脉高压发病机制研究进展[J].心血管病学进展,2021,(3):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
LI Haitong,YAN Li.Pathogenesis of Thyroid Disease-related Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(7):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
[8]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(7):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
[9]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(7):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[10]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(7):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]