[1]袁敏?韩轩茂?蔺雪峰.纳米氧化铈抗氧化保护心肌细胞的研究进展[J].心血管病学进展,2023,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
 YUAN Min,HAN Xuanmao,LIN Xuefeng.Cerium Oxide Nanoparticles in Antioxidant Protection of M yocardial?ells?/html>[J].Advances in Cardiovascular Diseases,2023,(7):654.[doi:10.16806/j.cnki.issn.1004-3934.2023.07.018]
点击复制

纳米氧化铈抗氧化保护心肌细胞的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年7期
页码:
654
栏目:
综述
出版日期:
2023-07-25

文章信息/Info

Title:
Cerium Oxide Nanoparticles in Antioxidant Protection of M yocardial?ells?/html>
作者:
袁敏1?韩轩茂2?蔺雪峰2
(1.内蒙古科技大学包头医学院研究生院,内蒙古 包头 014010; 2.内蒙古科技大学包头医学院第一附属医院心内 科,内蒙古 包头 014010)
Author(s):
YUAN Min1HAN Xuanmao2LIN Xuefeng2
?1.Graduate School of Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014000Inner Mongolia,China; 2.Department of Cardiology,The First Affiliated Hospital of Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014010Inner Mongolia,China)
关键词:
纳米氧化铈氧化应激活性氧炎症心肌损伤
Keywords:
Cerium oxide nanoparticlesOxidative stressReactive oxygen speciesInflammationMyocardial damage
DOI:
10.16806/j.cnki.issn.1004-3934.2023.07.018
摘要:
纳米氧化铈(CeNPs)是一种很强的自由基清除剂。研究表明,CeNPs可预防炎症导致的氧化应激,也可调节免疫反应缓解炎症。炎症期间,不同的免疫反应具有明显不同的能量需求。过量的活性氧会造成氧化应激,而线粒体或其他细胞内来源产生的活性氧在心肌细胞缺血再灌注损伤的发病机制中起关键作用,CeNPs因其具有极好的氧缓冲能力及生物可降解性,目前在抗氧化研究中受到极大关注。现综述国内外CeNPs抵抗氧化应激、保护心肌细胞的具体机制,可能为CeNPs在临床心血管疾病的治疗中提供新的理论依据。
Abstract:
Cerium oxide nanoparticles(CeNPs) are a powerful free radical scavenger. Studies have shown that CeNPs can prevent oxidative stress caused by inflammation,and can also regulate immune response to alleviate inflammation. During inflammation,the different immune responses have obviously different energy requirements. Excessive reactive oxygen species can cause oxidative stress,and reactive oxygen species produced by mitochondria or other intracellular sources play a key role in the pathogenesis of myocardial ischemia reperfusion injury. CeNPs have attracted great attention in antioxidant research because of their excellent oxygen buffering capacity and biodegradability. In this paper,the specific mechanism of CeNPs resisting oxidative stress and protecting myocardial cells at home and abroad is discussed,which provides a new theoretical basis for CeNPs in the treatment of clinical cardiovascular diseases

参考文献/References:

[1].Ernst LM,Puntes V. How does immunomodulatory nanoceria work?ROS and immunometabolism[J]. Front Immunol,2022,13:750175.
[2].Carrión-García CJ,Guerra-Hernández EJ,García-Villanova B,et al. Plasma Non-Enzymatic Antioxidant Capacity (NEAC) in relation to dietary NEAC,Nutrient antioxidants andinflammation-related biomarkers[J]. Antioxidants (Basel),2020,9(4):301.
[3].Matondo A,Kim SS. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease[J]. J Drug Targeting,2018,26(1):1-8.
[4].Benfeito S,Oliveira C,Soares P,et al. Antioxidant therapy:still in search of the ’magic bullet’[J]. Mitochondrion,2013,13(5):427-435.
[5].Amekura S,Shiozawa K,Kiryu C,et al. Edaravone,a scavenger for multiple reactive oxygen species,reacts with singlet oxygen to yield 2-oxo-3-(phenylhydrazono)-butanoic acid[J].J Clin Biochem Nutr,2022,70(3):240-247.
[6].Rotaru A,T?rtea GC,Ianc?u M. The neuroprotective role of alpha thioctic acid and vitamin B complex in diabetic neuropathy-an experimental study[J]. Curr Health Sci J,2020,46 (2):150-155.
[7].Mou X ,Wu Q,Zhang Z,et al. Nanozymes for regenerative medicine[J]. Small Methods,2022,6(11):e2200997.
[8].Xu B,Li S,Zheng L,et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy[J]. Adv Mater,2022,34(15): e2107088.
[9].Xue Y,Balmuri SR,P atel A,et al. Synthesis,physico-chemical characterization,and antioxidant effect of PEGylated cerium oxide nanoparticles[J]. Drug Deliv Transl Res,2018,8(2):357-367.
[10].Singh S,K umar U,G ittess D,et al.Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization[J] . J Biomater Appl,2021,36(5): 834-842.
[11].Li Y,Li Y,Bai Y,et al. High catalytic efficiency from Er3+-doped CeO2- x nanoprobes for in vivo acute oxidative damage and inflammation therapy[J]. J Mater Chem B,2020,8 (37):8634-8643.
[12].Hasanzadeh L,Kazemi Oskuee R,Sadri K,et al. Green synthesis of labeled CeO2 nanoparticles with 99mTc and its biodistribution evaluation in mice[J] . Life Sci,2018,212:233-240.
[13].Charbgoo F,A hmad MB,D arroudi M. Cerium oxide nanoparticles: green synthesis and biological applications[J]. Int J Nanomedicine,2017,12: 1401-1413.
[14].Yu Y,Zhao S,Gu D,et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway[J]. Nanoscale,2022,14 (7):2628-2637.
[15].Saleh H,Nassar AMK,Noreldin AE,et al. Chemo-protective potential of cerium oxide nanoparticles against fipronil-induced oxidative stress,apoptosis,inflammation and reproductive dysfunction in male white albino rats[J]. Molecules,2020,25 (15):3479.
[16].Liemburg-Apers DC,Willems PH,Koopman WJ,et al. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism[J]. Arch Toxicol,2015,89(8):1209-1226.
[17].Díaz HS,Ríos-Gallardo A,Ortolani D,et al. Lipid-encapsuled grape tannins prevent oxidative-stress-induced neuronal cell death, intracellular ROS accumulation and inflammation[J]. Antioxidants(Basel),2022,11(10):1928.
[18].Zheng Q,Fang Y,Zeng L,et al. Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization[J]. J Mater Chem B,2019, 7(43):6759-6769.
[19].Wasef L,Nassar AMK,El-Sayed YS,et al. The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis[J]. Sci Rep,2021,11(1):1310.
[20].Zito C,Manganaro R,Cusmà Piccione M,et al. Anthracyclines and regional myocardial damage in breast cancer patients. A multicentre study from the Working Group on Drug Cardiotoxicity and Cardioprotection, Italian Society of Cardiology (SIC)[J]. Eur Heart J Cardiovasc Imaging,2021,22(4):406-415.
[21].Ugov?ek S,Rehberger Likozar A,Finderle S,et al. TNF-α predicts endothelial function and number of CD34+ cells after stimulation with G-CSF in patients with advanced heart failure[J]. J Cardiovasc Dev Dis,2022,9(8):281.
[22].Bilchick K,Kothari H,Narayan A,et al. Cardiac resynchronization therapy reduces expression of inflammation-promoting genes related to interleukin-1β in heart failure[J]. Cardiovascr Res,2020,116(7):1311-1322.
[23].Xu Y,Hu Y,Geng Y,et al. Pentraxin 3 depletion (PTX3 KD) inhibited myocardial fibrosis in heart failure after myocardial infarction[J]. Aging,2022,14 (9):4036-4049.
[24].Liu Z ,Zhang Z,Zou T,et al. Discovery of novel dihydropyrazole-stilbene derivatives for ameliorating heart failure through modulation of p38/NF-κB signaling pathway[J]. Bioorg Chem,2022,129:106206.
[25].Zhang J,Jiang S,Lu C,et al. SYVN1/GPX5 axis affects ischemia/reperfusion induced apoptosis of AC16 cells by regulating ROS generation[J]. Am J Transl Res,2021,13 (5):4055-4067.
[26].Wang C,Chen J,Wang M,et al. Role of the TRPM4 channel in mitochondrial function,calcium release,and ROS generation in oxidative stress[J]. Biochem Biophys Res Commun,2021,5 75:96-98.
[27].Casals E,Zeng M,Parra-Robert M,et al. Cerium oxide nanoparticles:advances in biodistribution,toxicity,and preclinical exploration[J]. Small,2020,16 (20):e1907322.
[28].Liguori I,Russo G,Curcio F,et al. Oxidative stress,aging,and diseases[J]. Clin Interv Aging, 2018,13:757 -772.
[29].Pagliari F,Mandoli C,Forte G,et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress[J]. ACS Nano,2012,6(5):3767-3775.
[30].Mohamed HRH. Acute oral administration of cerium oxide nanoparticles suppresses lead acetate-induced genotoxicity,inflammation,and ROS generation in mice renal and cardiac tissues[J]. Biol Trace Elem Res,2022,200 (7):3284-3293.
[31].Nassar SZ,Hassaan PS,Abdelmonsif DA,et al. Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension:A possible implication of endothelin-1[J]. Life Sci,2018,201:89-101.
[32].Kumari P ,Saifi MA,Khurana A ,et al. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling[J]. J Trace Elem Med Biol,2018,50:198-208.
[33].Sangomla S ,Saifi MA,Khurana A ,et al. Nanoceria ameliorates doxorubicin induced cardiotoxicity:Possible mitigation via reduction of oxidative stress and inflammation[J]. J Trace Elem Med Biol,2018,47:53-62.
[34].El Shaer SS,Salaheldin TA,Saied NM,et al. In vivo ameliorative effect of cerium oxide nanoparticles in isoproterenol-induced cardiac toxicity[J]. Exp Toxicol Pathol,2017,69(7):435-441.
[35].Niu J,Azfer A,Rogers LM,et al. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy[J]. Cardiovasc Res,2007,73(3):549-559.
[36].Jain A,Behera M,Mahapatra C,et al. Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch[J]. Mater Sci Eng C Mater Biol Appl,2021,118:111416.

相似文献/References:

[1]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
 JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(7):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(7):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
 YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(7):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
 LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(7):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
[5]王瑞钰,彭琳茜,李灵姣,等.硫氧还蛋白系统与高血压的研究进展[J].心血管病学进展,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
 WANG RuiyuPENG LinqianLI LingjiaoXUE QianWANG LiangDU WeiHUANG Jing.Thioredoxin System in Hypertension[J].Advances in Cardiovascular Diseases,2020,(7):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
[6]李丹 徐蔓 唐其柱.Nox5在心血管疾病中的作用[J].心血管病学进展,2020,(12):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
 Li Dan,Xu Man,Tang Qizhu.The Role of Nox5 in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(7):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
[7]李海通 闫莉.甲状腺疾病相关肺动脉高压发病机制研究进展[J].心血管病学进展,2021,(3):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
 LI Haitong,YAN Li.Pathogenesis of Thyroid Disease-related Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(7):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
[8]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
 MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(7):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
[9]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(7):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[10]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
 SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(7):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]

更新日期/Last Update: 2023-08-18