[1]马淑青 唐其柱.氧化应激在脓毒症心肌病中的研究进展[J].心血管病学进展,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
 MA Shuqing,TANG Qizhu.Role of Oxidative Stress in Septic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2021,(2):118.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.006]
点击复制

氧化应激在脓毒症心肌病中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2021年2期
页码:
118
栏目:
综述
出版日期:
2021-02-25

文章信息/Info

Title:
Role of Oxidative Stress in Septic Cardiomyopathy
作者:
马淑青 唐其柱
 (武汉大学人民医院心血管内科,代谢与相关慢病湖北省重点实验室,湖北 武汉430060)
Author(s):
MA ShuqingTANG Qizhu
(Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Metabolic and Chronic DiseasesWuhan 430060HubeiChina)
关键词:
氧化应激脓毒症心肌病一氧化氮抗氧化剂
Keywords:
Oxidative stress Septic cardiomyopathy Nitric oxide Antioxidants
DOI:
10.16806/j.cnki.issn.1004-3934.2021.02.006
摘要:
脓毒症心肌病是脓毒症引起的多器官功能障碍的一部分,使脓毒症患者的病程复杂化,并威胁患者生存。脓毒症引起了包括心肌细胞在内的多种细胞的氧化应激反应,表现为氧化剂生成和抗氧化剂清除的失衡,进一步导致心肌结构紊乱、能量代谢衰竭和细胞凋亡,从而加重了脓毒症患者心肌功能障碍。因此,针对氧化应激相关靶点的治疗对提高脓毒症患者心功能、改善预后有重要意义。现总结氧化应激在脓毒症心肌病中的作用及针对氧化还原失衡的潜在治疗措施的最新研究进展。
Abstract:
Septic cardiomyopathy is a part of multiple organ dysfunction caused by sepsis, which complicates the course of sepsis and threatens the survival of patients. Oxidative stress of myocardial cells caused by sepsis is manifested as the imbalance of oxidant production and antioxidant clearance, which further leads to myocardial structural disorder , energy metabolism failure and cell apoptosis , thus aggravating myocardial dysfunction in patients with sepsis. Therefore, the treatment of oxidative stress-related targets is of great significance to improve cardiac function and prognosis in patients with sepsis. This review summarizes the role of oxidative stress in septic cardiomyopathy and the latest research progress in the potential treatment of redox imbalance.

参考文献/References:




[1] 王颍骅,何奔. 脓毒症型心肌病的研究进展[J]. 心血管病学进展,2019,40(8):1150-1153.

[2] Jia L,Wang Y,Wang Y,et al. Heme oxygenase-1 in macrophages drives septic cardiac dysfunction via suppressing lysosomal degradation of inducible nitric oxide synthase[J]. Circ Res,2018,122(11):1532-1544.

[3] Kong X,Thimmulappa R,Kombairaju P,et al. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice[J]. J Immunol,2010,185(1):569-577.

[4] Matsuno K,Iwata K,Matsumoto M,et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis[J]. Free Radic Biol Med,2012,53(9):1718-1728.

[5] Zang Q,Maass DL,Tsai SJ,et al. Cardiac mitochondrial damage and inflammation responses in sepsis[J]. Surg Infect (Larchmt),2007,8(1):41-54.

[6] Celes MR,Torres-Due?as D,Prado CM,et al. Increased sarcolemmal permeability as an early event in experimental septic cardiomyopathy:a potential role for oxidative damage to lipids and proteins[J]. Shock,2010,33(3):322-331.

[7] Yao X,Carlson D,Sun Y,et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model[J]. PLoS One,2015,10(10):e0139416.

[8] Matkovich SJ,Al Khiami B,Efimov IR,et al. Widespread down-regulation of cardiac mitochondrial and sarcomeric genes in patients with sepsis[J]. Crit Care Med,2017,45(3):407-414.

[9] Liaudet L,Soriano FG,Szabó C. Biology of nitric oxide signaling[J]. Crit Care Med,2000,28(4 Suppl):N37- N 52.

[10] Cimolai MC,Alvarez S,Bode C,et al. Mitochondrial mechanisms in septic cardiomyopathy[J]. Int J Mol Sci,2015,16(8):17763-17778.

[11] Ott M,Gogvadze V,Orrenius S,et al. Mitochondria,oxidative stress and cell death[J]. Apoptosis,2007,12(5):913-922.

[12] Russell JA,Rush B,Boyd J. Pathophysiology of septic shock[J]. Crit Care Clin,2018,34(1):43-61.

[13] Ichinose F,Buys ES,Neilan TG,et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock[J]. Circ Res,2007,100(1):130-139.

[14] Cinelli MA,Do HT,Miley GP,et al. Inducible nitric oxide synthase:regulation,structure,and inhibition[J]. Med Res Rev,2020,40(1):158-189.

[15] Vico TA,Marchini T,Ginart S,et al. Mitochondrial bioenergetics links inflammation and cardiac contractility in endotoxemia[J]. Basic Res Cardiol,2019,114(5):38.

[16] Vasques-Nóvoa F,Laundos TL,Cerqueira RJ,et al. MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock[J]. Crit Care Med,2018,46(9):e945-e954.

[17] De Backer D,Cecconi M,Lipman J,et al. Challenges in the management of septic shock:a narrative review[J]. Intensive Care Med,2019,45(4):420-433.

[18] Torraco A,Carrozzo R,Piemonte F,et al. Effects of levosimendan on mitochondrial function in patients with septic shock:a randomized trial[J]. Biochimie,2014,102:166-173.

[19] Schellekens WJ,van Hees HW,Linkels M,et al. Levosimendan affects oxidative and inflammatory pathways in the diaphragm of ventilated endotoxemic mice[J]. Crit Care,2015,19(1):69.

[20] Huang HC,Hsiao TS,Liao MH,et al. Low-dose hydralazine improves endotoxin-induced coagulopathy and multiple organ dysfunction via its anti-inflammatory and anti-oxidative/nitrosative properties[J]. Eur J Pharmacol,2020,882:173279.

[21] Merx MW,Liehn EA,Janssens U,et al. HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis[J]. Circulation,2004,109(21):2560-2565.

[22] Wang Y,Zhang L,Zhao X,et al. An experimental study of the protective effect of simvastatin on sepsis-induced myocardial depression in rats[J]. Biomed Pharmacother,2017,94:705-711.

[23] Kr?ller-Sch?n S,Knorr M,Hausding M,et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition[J]. Cardiovasc Res,2012,96(1):140-149.

[24] Carlson D,Maass DL,White DJ,et al. Antioxidant vitamin therapy alters sepsis-related apoptotic myocardial activity and inflammatory responses[J]. Am J Physiol Heart Circ Physiol,2006,291(6):H2779- H2789.

[25] Fowler AA,3rd,Syed AA,Knowlson S,et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis[J]. J Transl Med,2014,12:32.

[26] Fowler AA,3rd,Truwit JD,Hite RD,et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure:the CITRIS-ALI randomized clinical trial[J]. JAMA,2019,322(13):1261-1270.

[27] Hemil? H,Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients:a meta-regression analysis[J]. J Intensive Care,2020,8:15.

[28] Moskowitz A,Andersen LW,Huang DT,et al. Ascorbic acid,corticosteroids,and thiamine in sepsis:a review of the biologic rationale and the present state of clinical evaluation[J]. Crit Care,2018,22(1):283.

[29] Marik PE,Khangoora V,Rivera R,et al. Hydrocortisone,vitamin C,and thiamine for the treatment of severe sepsis and septic shock:a retrospective before-after study[J]. Chest,2017,151(6):1229-1238.

[30] Rahim I,Djerdjouri B,Sayed RK,et al. Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis[J]. J Pineal Res,2017,63(1).DOI:10.1111/jpi.12410.

[31] Zhong J,Tan Y,Lu J,et al. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy:a novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function[J]. Redox Biol,2019,26:101287.

[32] Zhang J,Wang L,Xie W,et al. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy:a new mechanism involving BAP31 upregulation and MAPK-ERK pathway[J]. J Cell Physiol,2020,235(3):2847-2856.

[33] Di S,Wang Z,Hu W,et al. The protective effects of melatonin against LPS-induced septic myocardial injury:a potential role of AMPK-mediated autophagy[J]. Front Endocrinol (Lausanne),2020,11:162.

[34] Ouyang H,Li Q,Zhong J,et al. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways[J]. J Cell Physiol,2020,235(10):6647-6659.

[35] Leger T,Azarnoush K,Traoré A,et al. Antioxidant and cardioprotective effects of EPA on early low-severity sepsis through UCP3 and SIRT3 upholding of the mitochondrial redox potential[J]. Oxid Med Cell Longev,2019,2019:9710352.

[36] 季春影,张瑞英. 心力衰竭与心肌线粒体代谢[J]. 心血管病学进展,2020,41(1):63-66.

[37] Kokkinaki D,Hoffman M,Kalliora C,et al. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy[J]. J Mol Cell Cardiol ,2019,127:232-245.

[38] Ndongson-Dongmo B,Lang GP,Mece O,et al. Reduced ambient temperature exacerbates SIRS-induced cardiac autonomic dysregulation and myocardial dysfunction in mice[J]. Basic Res Cardiol,2019,114(3):26.

[39] Ortiz F,García JA,Acu?a-Castroviejo D,et al. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis:inhibition of iNOS and preservation of nNOS[J]. J Pineal Res ,2014,56(1):71-81.

[40] Zeng N,Xu J,Yao W,et al. Brain-derived neurotrophic factor attenuates septic myocardial dysfunction via eNOS/NO pathway in rats[J]. Oxid Med Cell Longev,2017,2017:1721434.

[41] Suliman HB,Keenan JE,Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1-/- mice[J]. JCI insight,2017,2(3):e89676.

[42] Yan XT,He XH,Wang YL,et al. Transduced PEP-1-heme oxygenase-1 fusion protein attenuates lung injury in septic shock rats[J]. Oxid Med Cell Longev,2018,2018:6403861.

[43] He C,Zhang W,Li S,et al. Edaravone improves septic cardiac function by inducing an HIF-1α/HO-1 pathway[J]. Oxid Med Cell Longev,2018,2018:5216383.

相似文献/References:

[1]季春影 张瑞英.心力衰竭与心肌线粒体代谢[J].心血管病学进展,2020,(1):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
 JI ChunyingZHANG Ruiying.Heart Failure and Myocardial Mitochondrial Metabolism[J].Advances in Cardiovascular Diseases,2020,(2):63.[doi:10.16806/j.cnki.issn.1004-3934.2020.01.017]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]严宁,杨春霞,马娟,等.β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J].心血管病学进展,2020,(3):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
 YAN Ning,YANG Chunxia,MA Juan,et al.Effects of -sitosterolon Myocardial Ischemia-reperfusion Injury and ERK1/2 Signaling Pathway in Rats[J].Advances in Cardiovascular Diseases,2020,(2):321.[doi:10.16806/j.cnki.issn.1004-3934.2020.03.026]
[4]刘家汝 关秀茹.Nrf2/ARE信号通路在动脉粥样硬化中的研究新进展[J].心血管病学进展,2020,(8):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
 LIU Jiaru,GUAN Xiuru.Nrf2/ARE Signaling Pathway in Atherosclerosis[J].Advances in Cardiovascular Diseases,2020,(2):859.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.019]
[5]王瑞钰,彭琳茜,李灵姣,等.硫氧还蛋白系统与高血压的研究进展[J].心血管病学进展,2020,(10):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
 WANG RuiyuPENG LinqianLI LingjiaoXUE QianWANG LiangDU WeiHUANG Jing.Thioredoxin System in Hypertension[J].Advances in Cardiovascular Diseases,2020,(2):1036.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.009]
[6]李丹 徐蔓 唐其柱.Nox5在心血管疾病中的作用[J].心血管病学进展,2020,(12):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
 Li Dan,Xu Man,Tang Qizhu.The Role of Nox5 in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(2):1302.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.019]
[7]李海通 闫莉.甲状腺疾病相关肺动脉高压发病机制研究进展[J].心血管病学进展,2021,(3):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
 LI Haitong,YAN Li.Pathogenesis of Thyroid Disease-related Pulmonary Hypertension[J].Advances in Cardiovascular Diseases,2021,(2):232.[doi:10.16806/j.cnki.issn.1004-3934.2021.03.010]
[8]王晓琪 苏冠华.高尿酸血症和心力衰竭的病理生理机制、治疗和预后价值[J].心血管病学进展,2021,(9):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
 WANG Xiaoqi,SU Guanhua.Pathophysiological Mechanism, Treatment and Prognostic Value of Hyperuricemia and Heart Failure[J].Advances in Cardiovascular Diseases,2021,(2):780.[doi:10.16806/j.cnki.issn.1004-3934.2021.09.000]
[9]宋雨 李耘 马丽娜.老年人衰弱和射血分数保留性心力衰竭病理生理学机制的研究进展[J].心血管病学进展,2022,(1):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
 SONG Yu,LI Yun,MA Lina.Pathophysiological Mechanisms of Frailty and Heart Failure with Preserved Ejection Fraction in the Elderly[J].Advances in Cardiovascular Diseases,2022,(2):38.[doi:10.16806/j.cnki.issn.1004-3934.2022.01.010]
[10]周慧鑫 谌虎 刘志豪 周雨扬 李泽衍 许骁 陈华强 刘承哲 刘旨浩 王宇虹 王悦怡 赖燕秋 余锂镭 江洪.二甲双胍对心肌梗死后心脏功能的影响及其机制研究[J].心血管病学进展,2022,(3):265.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]

更新日期/Last Update: 2021-06-09