[1]耿超强,高奋,李首才,等.红细胞在脂质代谢和动脉粥样硬化中的研究进展[J].心血管病学进展,2023,(3):256.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.015]
 GENG Chaoqiang,GAO Fen.Red Blood Cell in Lipid Metabolism and Atherosclerosis[J].Advances in Cardiovascular Diseases,2023,(3):256.[doi:10.16806/j.cnki.issn.1004-3934.2023.03.015]
点击复制

红细胞在脂质代谢和动脉粥样硬化中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年3期
页码:
256
栏目:
综述
出版日期:
2023-03-25

文章信息/Info

Title:
Red Blood Cell in Lipid Metabolism and Atherosclerosis
作者:
耿超强高奋李首才杨尚铭
( 1.山西医科大学,山西 太原 030001;2.山西医科大学第二医院心内科,山西 太原 030001)
Author(s):
GENG Chaoqiang1 GAO Fen2
(1.Shanxi Medical University,Taiyuan 030001,Shanxi,China; 2.Cardiovascular Department,The Second Hospital of Shanxi Medical University,Taiyuan 030001,Shanxi,China)
关键词:
红细胞动脉粥样硬化胆固醇逆转运胆固醇
Keywords:
Red blood cellAtherosclerosisReverse cholesterol transportCholesterol
DOI:
10.16806/j.cnki.issn.1004-3934.2023.03.015
文献标志码:
A
摘要:
动脉粥样硬化的发展和进展涉及脂质蓄积,氧化应激以及炎症反应等机制。红细胞是体内的重要组成成分,主要是参与组织进行气体交换。红细胞长期以来一直被认为是动脉粥样硬化的旁观者。而最新研究发现红细胞是血浆脂质代谢的参与者,并且参与动脉粥样硬化的发生和发展。本综述介绍了红细胞的结构和生理功能,并着重讨论了红细胞对动脉粥样硬化的影响。
Abstract:
The formation and progress of atherosclerosis involves lipid accumulation,oxidative stress and inflammation. Red blood cell is an important component of the body whose main function is to exchange gas with tissues throughout the body. Red blood cell has long been considered bystanders of atherosclerosis. However,recent studies have found that red blood cell is participant in plasma lipid metabolism and participate in the formation and progress of atherosclerosis. This review introduces the structure and physiological functions of red blood cell,and focuses on the effect of red blood cell on atherosclerosis.

参考文献/References:

[1] Jebari-Benslaiman S,Galicia-García U,Larrea-Sebal A,et al. Pathophysiology of atherosclerosis[J]. Int J Mol Sci,2022,23(6):3346.

[2] Ohkawa R,Low H,Mukhamedova N,et al. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood[J]. J Lipid Res,2020,61(12):1577-1588.?/div>
[3] Hung KT,Berisha SZ,Ritchey BM,et al. Red blood cells play a role in reverse cholesterol transport[J]. Arterioscler Thromb Vasc Biol,2012,32(6):1460-1465.?/div>
[4] Lai SJ,Ohkawa R,Horiuchi Y,et al. Red blood cells participate in reverse cholesterol transport by mediating cholesterol efflux of high-density lipoprotein and apolipoprotein A-I from THP-1 macrophages[J]. Biol Chem,2019,400(12):1593-1602.?/div>
[5] Turpin C,Catan A,Meilhac O,et al. Erythrocytes:central actors in multiple scenes of atherosclerosis[J]. Int J Mol Sci,2021,22(11):5843.?/div>
[6] Papadopoulos C,Panopoulou M,Anagnostopoulos K,et al. Immune and metabolic interactions of human erythrocytes:a molecular perspective[J]. Endocr Metab Immune Disord Drug Targets,2021,21(5):843-853.?/div>
[7] Cyr AR,Huckaby LV,Shiva SS,et al. Nitric oxide and endothelial dysfunction[J]. Crit Care Clin,2020,36(2):307-321.
[8] Arbustini E,Morbini P,D’Armini AM,et al. Plaque composition in plexogenic and thromboembolic pulmonary hypertension:the critical role of thrombotic material in pultaceous core formation[J]. Heart,2002,88(2):177-182.?/div>
[9] Delbosc S,Bayles RG,Laschet J,et al. Erythrocyte efferocytosis by the arterial wall promotes oxidation in early-stage atheroma in humans[J]. Front Cardiovasc Med,2017,4:43.?/div>
[10] Dybas J,Bulat K,Blat A,et al. Age-related and atherosclerosis-related erythropathy in ApoE/LDLR-/- mice[J]. Biochim Biophys Acta Mol Basis Dis,2020,1866(12):165972.
[11] Uydu HA,Bostan M,Atak M,et al. Cholesterol forms and traditional lipid profile for projection of atherogenic dyslipidemia:lipoprotein subfractions and erythrocyte membrane cholesterol[J]. J Membr Biol,2014,247(2):127-134.
[12] Schaffer A,Verdoia M,Cassetti E,et al. Impact of red blood cells count on the relationship between high density lipoproteins and the prevalence and extent of coronary artery disease:a single centre study[corrected][J]. J Thromb Thrombolysis,2015,40(1):61-68.
[13] Ouimet M,Barrett TJ,Fisher EA. HDL and reverse cholesterol transport[J]. Circ Res,2019,124(10):1505-1518.
[14] Lee-Rueckert M,Escola-Gil JC,Kovanen PT. HDL functionality in reverse cholesterol transport—Challenges in translating data emerging from mouse models to human disease[J]. Biochim Biophys Acta,2016,1861(7):566-583.
[15] Cedó L,Metso J,Santos D,et al. LDL receptor regulates the reverse transport of macrophage-derived unesterified cholesterol via concerted action of the HDL-LDL axis:insight from mouse models[J]. Circ Res,2020,127(6):778-792.
[16] Xu X,Song Z,Mao B,et al. Apolipoprotein A1-related proteins and reverse cholesterol transport in antiatherosclerosis therapy:recent progress and future perspectives[J]. Cardiovasc Ther,2022,2022:4610834.
[17] Bovenberg SA,Klop B,Alipour A,et al. Erythrocyte-associated apolipoprotein B and its relationship with clinical and subclinical atherosclerosis[J]. Eur J Clin Invest,2012,42(4):365-370.
[18] de Vries MA,van Santen SS,Klop B,et al. Erythrocyte-bound apolipoprotein B in atherosclerosis and mortality[J]. Eur J Clin Invest,2017,47(4):289-296.
[19] Feuerborn R,Besser M,Potì F,et al. Elevating endogenous sphingosine-1-phosphate (S1P) levels improves endothelial function and ameliorates atherosclerosis in low density lipoprotein receptor-deficient (LDL-R-/-) Mice[J]. Thromb Haemost,2018,118(8):1470-1480.
[20] Thuy AV,Reimann CM,Hemdan NY,et al. Sphingosine 1-phosphate in blood:function,metabolism,and fate[J]. Cell Physiol Biochem,2014,34(1):158-171.
[21] Christensen PM,Bosteen MH,Hajny S,et al. Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes[J]. Sci Rep,2017,7(1):14983.
[22] Dai L,Chu SP,Wang ZH,et al. APOC3 promotes TNF-alpha-induced expression of JAM-1 in endothelial cell via PI3K-IKK2-p65 pathway[J]. Cardiovasc Pathol,2019,41:11-17.
[23] Zha Y,Lu Y,Zhang T,et al. CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits[J]. Lipids Health Dis,2021,20(1):180.
[24] Tziakas DN,Chalikias GK,Stakos D,et al. The role of red blood cells in the progression and instability of atherosclerotic plaque[J]. Int J Cardiol,2010,142(1):2-7.
[25] Tziakas DN,Kaski JC,Chalikias GK,et al. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome:a new marker of clinical instability?[J]. J Am Coll Cardiol,2007,49(21):2081-2089.
[26] Namazi G,Pourfarzam M,Jamshidi Rad S,et al. Association of the total cholesterol content of erythrocyte membranes with the severity of disease in stable coronary artery disease[J]. Cholesterol,2014,2014:821686.
[27] Zhong Y,Tang H,Zeng Q,et al. Total cholesterol content of erythrocyte membranes is associated with the severity of coronary artery disease and the therapeutic effect of rosuvastatin[J]. Ups J Med Sci,2012,117(4):390-398.
[28] Grebe A,Latz E. Cholesterol crystals and inflammation[J]. Curr Rheumatol Rep,2013,15(3):313.
[29] Andersen CBF,St?kilde K,Saederup KL,et al. Haptoglobin[J]. Antioxid Redox Signal,2017,26(14):814-831.
[30] Bozza MT,Jeney V. Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs[J]. Front Immunol,2020,11:1323.
[31] Wischmann P,Kuhn V,Suvorava T,et al. Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool:vascular and cardiac eNOS are crucial for the adaptation to anaemia[J]. Basic Res Cardiol,2020,115(4):43.
[32] Potor L,Hendrik Z,Patsalos A,et al. Oxidation of hemoglobin drives a proatherogenic polarization of macrophages in human atherosclerosis[J]. Antioxid Redox Signal,2021,35(12):917-950.
[33] Zhu Y,Xian X,Wang Z,et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80.?/div>
[34] Ouyang S,You J,Zhi C,et al. Ferroptosis:the potential value target in atherosclerosis[J]. Cell Death Dis,2021,12(8):782.
[35] Zhao ZW,Zhang M,Chen LY,et al. Heat shock protein 70 accelerates atherosclerosis by downregulating the expression of ABCA1 and ABCG1 through the JNK/Elk-1 pathway[J]. Biochim Biophys Acta Mol Cell Biol Lipids,2018,1863(8):806-822.
[36] Kotla S,Singh NK,Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation[J]. Redox Biol,2017,11:350-364.
[37] Tziakas DN,Chalikias G,Pavlaki M,et al. Lysed erythrocyte membranes promote vascular calcification[J]. Circulation,2019,139(17):2032-2048.
[38] B?m EW,Pavlaki M,Chalikias G,et al. Colocalization of erythrocytes and vascular calcification in human atherosclerosis:a systematic histomorphometric analysis[J]. TH Open,2021,5(2):e113-e124.

相似文献/References:

[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
 LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
 GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(3):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
 YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(3):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
 WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(3):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
 LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(3):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
 HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(3):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
 JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(3):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
 XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(3):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
 SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(3):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
 DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(3):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]

更新日期/Last Update: 2023-04-24