[1]刘晓旭 莫绪明.先天性心脏病患儿心肺转流术后肠道损伤机制及治疗进展[J].心血管病学进展,2023,(6):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
 LIU Xiaoxu,MO Xuming.Mechanism and Treatment of Intestinal Injury After Cardiopulmonary Bypass in Children with Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2023,(6):501.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.0005]
点击复制

先天性心脏病患儿心肺转流术后肠道损伤机制及治疗进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2023年6期
页码:
501
栏目:
综述
出版日期:
2023-06-25

文章信息/Info

Title:
Mechanism and Treatment of Intestinal Injury After Cardiopulmonary Bypass in Children with Congenital Heart Disease
作者:
刘晓旭 莫绪明
?南京医科大学附属儿童医院心胸外科,江苏 南京 210008)
Author(s):
LIU Xiaoxu MO Xuming
(Department of Thoracic & Cardiovascular Surgery,Childrens Hospital of Nanjing Medical University Nanjing 210008 ,Jiangsu,China)
关键词:
先天性心脏病心肺转流术肠缺血再灌注肠黏膜屏障肠道菌群
Keywords:
Congenital heart disease Cardiopulmonary bypass Intestinal ischemia reperfusion Intestinal mucosal barrier Gut microbiome
DOI:
10.16806/j.cnki.issn.1004-3934.2023.06.0005
摘要:
先天性心脏病(CHD)是新生儿最常见的出生缺陷之一,其中部分CHD需在心肺转流术(CPB)辅助下外科手术矫正。CPB在手术过程中通过人工装置暂时替代患者心肺功能,会影响患儿全身的血液循环,尤其影响患儿肠道的血流灌注,导致线粒体功能障碍、钠钾泵调节功能减弱和细胞内酸中毒,破坏肠道屏障,使内毒素及细菌从肠道转移至血流中,导致肠道功能紊乱,最终影响患儿的预后。如何积极的防治CPB造成的肠道功能损伤是当前临床医生面临的一大难题,有研究发现,改善肠道血流灌注、抑制肠道炎症、调节肠道菌群可减轻肠道损伤,改善预后。现对经历CPB的CHD患儿肠道损伤机制及应对措施展开综述。
Abstract:
Congenital heart disease (CHD) is one of the most common birth defects in newborns,some CHD needs surgical correction assisted by cardiopulmonary bypass (CPB). CPB is a special technique that temporarily replaces the patients’ cardiopulmonary function with artificial devices during surgery thus influencing the patients’ systemic blood circulation especially the intestinal blood perfusion. These result in mitochondrial and sodium potassium pump malfunction and intracellular acidosis ,which destruct the intestinal barrier and allow endotoxins and bacteria to transfer from intestinal to the bloodstream,leading to intestinal dysfunction and eventually affecting the prognosis of children.??How to actively prevent and cure the intestinal function injury caused by CPB is a major problem faced by clinicians at present. Some studies have found that improving intestinal blood perfusion ,inhibiting intestinal inflammation and regulating intestinal flora can reduce intestinal injury and improve patients’ prognosis. This paper reviews the mechanism and countermeasures of intestinal injury in children with CHD undergoing CPB

参考文献/References:

[1] 刘迎龙,苏俊武. 建国70年来我国先天性心脏病诊治回顾与进展[J]. 中国医药,2019,14(9):1281-1284.

[2] Typpo KV,Larmonier CB,Deschenes J,et al. Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease[J]. Pediatr Crit Care Med,2015,16(1):37-44.

[3] Salomon J,Ericsson A,Price A,et al. Dysbiosis and intestinal barrier dysfunction in pediatric congenital heart disease is exacerbated following cardiopulmonary bypass[J]. JACC Basic Transl Sci,2021,6(4):311-327.

[4] Ding W,Liu J,Zhou X,et al. Clinical multi-omics study on the gut microbiota in critically ill patients after cardiovascular surgery combined with cardiopulmonary bypass with or without sepsis (MUL-GM-CSCPB Study):a prospective study protocol[J]. Front Med (Lausanne),2020,7:269.

[5] Hirata Y. Cardiopulmonary bypass for pediatric cardiac surgery[J]. Gen Thorac Cardiovasc Surg,2018,66(2):65-70.

[6] Zhang X,Zhang W,Lou H,et al. Risk factors for prolonged intensive care unit stays in patients after cardiac surgery with cardiopulmonary bypass:a retrospective observational study[J]. Int J Nurs Sci,2021,8(4):388-393.

[7] Kalder J,Ajah D,Keschenau P,et al. Microcirculatory perfusion shift in the gut wall layers induced by extracorporeal circulation[J]. J Vasc Surg,2015,61(2):497-503.

[8] Sakamoto T,Fujiogi M,Matsui H,et al. Clinical features and outcomes of nonocclusive mesenteric ischemia after cardiac surgery:a retrospective cohort study[J]. Heart Vessels,2020,35(5):630-636.

[9] Adamik B,Kübler A,Gozdzik A,et al. Prolonged cardiopulmonary bypass is a risk factor for intestinal ischaemic damage and endotoxaemia[J]. Heart Lung Circ,2017,26(7):717-723.

[10] Serek P,Oleksy-Wawrzyniak M. The effect of bacterial infections,probiotics and zonulin on intestinal barrier integrity[J]. Int J Mol Sci,2021,22(21):11359.

[11] Shi N,Li N,Duan X,et al. Interaction between the gut microbiome and mucosal immune system[J]. Mil Med Res,2017,4:14.

[12] Chelakkot C,Ghim J,Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Exp Mol Med,2018,50(8):1-9.

[13] 金鹏锋,陈琳,胡耀仁,等. 脓毒症的肠道发病机制研究进展[J]. 中华医院感染学杂志,2018,28(10):1441-1445.

[14] Zhao Q,Maynard CL. Mucus,commensals,and the immune system[J]. Gut Microbes,2022,14(1):2041342.

[15] Gai X,Wang H,Li Y,et al. Fecal microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of sepsis[J]. Front Cell Infect Microbiol,2021,11:736204.

[16] 黄艳,梁小琴,张敏,等. 新生儿坏死性小肠结肠炎不良预后危险因素分析[J]. 中华新生儿科杂志,2018,33(5):368-371.

[17] Tsou AM,Goettel JA,Bao B,et al. Utilizing a reductionist model to study host-microbe interactions in intestinal inflammation[J]. Microbiome,2021,9(1):215.

[18] Tian Y,Shu R,Lei Y,et al. Somatostatin attenuates intestinal epithelial barrier injury during acute intestinal ischemia-reperfusion through Tollip/Myeloiddifferentiationfactor 88/Nuclear factor kappa-B signaling[J]. Bioengineered,2022,13(3):5005-5020.

[19] Jin C,Fu WL,Zhang D,et al. The protective role of IL-1Ra on intestinal ischemia reperfusion injury by anti-oxidative stress via Nrf2/HO-1 pathway in rat[J]. Biomed J,2019,42(1):36-45.

[20] Deng F,Zhao BC,Yang X,et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis[J]. Gut Microbes,2021,13(1):1-21.

[21] Camara-Lemarroy CR,Metz L,Meddings JB,et al. The intestinal barrier in multiple sclerosis:implications for pathophysiology and therapeutics[J]. Brain,2018,141(7):1900-1916.

[22] Li Y,Song Z,Kerr K A,et al. Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function,and alters neuro-immune mediator and receptor expression[J]. PLoS One,2017,12(2):e0171617.

[23] Lock JY,Caboni M,Strandwitz P,et al. An in vitro intestinal model captures immunomodulatory properties of the microbiota in inflammation[J]. Gut Microbes,2022,14(1):2039002.

[24] Itoh H,Ichiba S,Ujike Y,et al. A prospective randomized trial comparing the clinical effectiveness and biocompatibility of heparin-coated circuits and PMEA-coated circuits in pediatric cardiopulmonary bypass[J]. Perfusion,2016,31(3):247-254.

[25] Fernández-Tomé S,Ortega Moreno L,Chaparro M,et al. Gut microbiota and dietary factors as modulators of the mucus layer in inflammatory bowel disease[J]. Int J Mol Sci,2021,22(19):10224.

[26] Hansson GC. Mucins and the Microbiome[J]. Annu Rev Biochem,2020,89:769-793.

[27] Paone P,Cani PD. Mucus barrier,mucins and gut microbiota:the expected slimy partners?[J]. Gut,2020,69(12):2232-2243.

[28] Tulstrup MV,Christensen EG,Carvalho V,et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class[J]. PLoS One,2015,10(12):e0144854.

[29] 周文君,李元敏,杨小芳,等. 防治体外循环心脏直视术后肠道屏障功能损伤的研究进展[J]. 华中科技大学学报(医学版),2018,47(6):768-771.

[30] Hanedan M O,Yürük M A,Arslan A K,et al. Heparin-coated vs. non-coated cardiopulmonary bypass circuits:comparing immediate results with different target activated clotting time[J]. Braz J Cardiovasc Surg,2020,35(6):913-917.

[31] Lin H,Zhang X,Wang D,et al. Anwulignan ameliorates the intestinal ischemia/reperfusion[J]. J Pharmacol Exp Ther,2021,378(3):222-234.

[32] Ikeda M,Shimizu K,Ogura H,et al. Hydrogen-rich saline regulates intestinal barrier dysfunction,dysbiosis,and bacterial translocation in a murine model of sepsis[J]. Shock,2018,50(6):640-647.

[33] Mueller K,Kokotilo MS,Carter J M,et al. Creatine-loading preserves intestinal barrier function during organ preservation[J]. Cryobiology,2018,84:69-76.

[34] Reintam Blaser A,Acosta S,Arabi YM. A clinical approach to acute mesenteric ischemia[J]. Curr Opin Crit Care,2021,27(2):183-192.

[35] Shen J,Zhan Y,He Q,et al. Remifentanil promotes PDIA3 expression by activating p38MAPK to inhibit intestinal ischemia/reperfusion-induced oxidative and endoplasmic reticulum stress[J]. Front Cell Dev Biol,2022,10:818513.

[36] Li X,Yang C,Gulifeire T,et al. [Ulinastatin protects intestinal mucosal barrier by inhibiting the activation of intestinal NLRP3 inflammasomes in septic rats][J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2021,33(2):192-197.

[37] Zhang YN,Chang ZN,Liu ZM,et al. Dexmedetomidine alleviates gut-vascular barrier damage and distant hepatic injury following intestinal ischemia/reperfusion injury in mice[J]. Anesth Analg,2022,134(2):419-431.

[38] Dong J,Liang W,Wang T,et al. Saponins regulate intestinal inflammation in colon cancer and IBD[J]. Pharmacol Res,2019,144:66-72.

[39] Raheem A,Liang L,Zhang G,et al. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation[J]. Front Immunol,2021,12:616713.

[40] Liu Q,Yu Z,Tian F,et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier[J]. Microb Cell Fact,2020,19(1):23.

[41] Hu J,Deng F,Zhao B,et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome,2022,10(1):38.

[42] 李元敏,崔芬芬,宋兵,等. 粪菌移植在体外循环术后肠道菌群失调患者中的应用[J]. 中国微生态学杂志,2019,31(2):202-205.

[43] Merenstein D,Fraser CM,Roberts RF,et al. Bifidobacterium animalis subsp. lactis BB-12 protects against antibiotic-induced functional and compositional changes in human fecal microbiome[J]. Nutrients,2021,13(8):2814.

[44] Szajewska H,Hojsak I. Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children[J]. Postgrad Med,2020,132(5):441-451.

[45] Guo Q,Goldenberg JZ,Humphrey C,et al. Probiotics for the prevention of pediatric antibiotic-associated diarrhea[J]. Cochrane Database Syst Rev,2019,4(4):CD004827.

相似文献/References:

[1]郭琳娟,洪葵.成人先天性心脏病心律失常的诊断和治疗进展[J].心血管病学进展,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
 GUO Linjuan,HONG Kui.Advances in Diagnosis and Treatment of Adult Congenital Heart Disease with Arrhythmia[J].Advances in Cardiovascular Diseases,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
[2]朱峰,陈铀.先天性心脏病相关肺动脉高压的治疗进展[J].心血管病学进展,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
 ZHU Feng,CHEN You.Congenital Heart Disease-related Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
[3]黄金秋 路发文 赵永康 陈宇雨 史红蕊 王萍 杨菊仙.先天性心脏病患儿营养状况及其危险因素分析[J].心血管病学进展,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
 HUANG Jinqiu,LU Fawen,ZHAO Yongkang,et al.Nutritional Status in Children with Congenital Heart Disease and the Influential Factors[J].Advances in Cardiovascular Diseases,2020,(6):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
[4]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
 ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(6):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
[5]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(6):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
[6]董捷 杜楚豪 董硕 刘顺 徐海涛 孙阳雪 邹孟轩 孙家树 李守军 杨克明 闫军.Uhl畸形诊断与治疗研究进展[J].心血管病学进展,2023,(8):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]
 DONG Jie DU Chuhao DONG ShuoLIU Shun,XU HaitaoSUN YangxueZOU MengxuanSUN JiashuLI Shoujun,YANG Keming,et al.Diagnosis and Treatment for Uhls Anomaly[J].Advances in Cardiovascular Diseases,2023,(6):686.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.004]
[7]陈颖慧 冯奕源 冯炜琦 吴逸卓 鲁亚南 于昱.血管发育异常的先天性心脏病患儿中Vav2基因突变的筛查和功能分析[J].心血管病学进展,2023,(8):757.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.019]
 CHEN Yinghui,FENG Yiyuan,FENG Weiqi,et al.Identification and Functional Analysis of Vav2 Novel Variant in Congenital Heart Diseases with Vascular Malformation[J].Advances in Cardiovascular Diseases,2023,(6):757.[doi:10.16806/j.cnki.issn.1004-3934.2023.08.019]
[8]李强强 顾虹.中国儿童肺动脉高压诊治现状[J].心血管病学进展,2024,(1):7.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.003]
 LI Qiangqiang,GU Hong.Current Status of Diagnosis and Treatment of Pulmonary Hypertension in Chinese Children[J].Advances in Cardiovascular Diseases,2024,(6):7.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.003]
[9]李思聪 罗勤 赵智慧 赵青 柳志红.房间隔缺损相关肺动脉高压机制及治疗进展[J].心血管病学进展,2024,(1):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]
 LI Sicong,LUO Qin,ZHAO Zhihui,et al.Pathogenesis and Treatment of Pulmonary Hypertension Associated with Atrial Septal Defect[J].Advances in Cardiovascular Diseases,2024,(6):11.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.004]
[10]关璐茜 罗勤 胡海波.高原地区先天性心脏病相关性肺动脉高压的研究进展[J].心血管病学进展,2024,(1):15.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.005]
 GUAN Luxi,LUO Qin,HU Haibo.Pulmonary Arterial Hypertension Associated with Congenital Heart Disease at High Altitude[J].Advances in Cardiovascular Diseases,2024,(6):15.[doi:10.16806/j.cnki.issn.1004-3934.2024.01.005]

更新日期/Last Update: 2023-07-21