参考文献/References:
[1]中华人民共和国卫生部. 《中国出生缺陷防治报告(2012)》[R/OL]. (2012-09-12). http://www.gov.cn/gzdt/att/att/site1/20120912/1c6f6506c7f811bacf9301.pdf.
[2]胡晓静,黄国英. 新生儿先天性心脏病筛查的研究进展[J]. 国际儿科学杂志,2014,41(2):4.
[3]Feltes TF,Bacha E,Beekman RH 3rd,et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease:a scientific statement from the American Heart Association[J]. Circulation,2011,123(22):2607-2652.
[4]Esteva A,Kuprel B,Novoa RA,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[5]Poplin R,Varadarajan AV,Blumer K,et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng,2018,2(3):158-164.
[6]Ouyang D,He B,Ghorbani A,et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature,2020,580(7802):252-256.
[7]Bensemlali M,Bajolle F,Laux D,et al. Neonatal management and outcomes of prenatally diagnosed CHDs[J]. Cardiol Young,2017,27(2):344-353.
[8]Sizarov A,Boudjemline Y. Valve interventions in utero:understanding the timing,indications,and approaches[J]. Can J Cardiol,2017,33(9):1150-1158.
[9]Donofrio MT,Moon-Grady AJ,Hornberger LK,et al. Diagnosis and treatment of fetal cardiac disease:a scientific statement from the American Heart Association[J]. Circulation,2014,129(21):2183-2242.
[10]Sekar P,Heydarian HC,Cnota JF,et al. Diagnosis of congenital heart disease in an era of universal prenatal ultrasound screening in southwest Ohio[J]. Cardiol Young,2015,25(1):35-41.
[11]Yeo L,Romero R. Fetal Intelligent Navigation Echocardiography (FINE):a novel method for rapid,simple,and automatic examination of the fetal heart[J]. Ultrasound Obstet Gynecol,2013,42(3):268-284.
[12]Yeo L,Romero R. Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart[J]. Ultrasound Obstet Gynecol,2017,50(4):476-491.
[13]Yeo L,Luewan S,Romero R. Fetal Intelligent Navigation Echocardiography (FINE) detects 98% of congenital heart disease[J]. J Ultrasound Med,2018,37(11):2577-2593.
[14]Gu X,Zhu H,Zhang Y,et al. Quantile score:a new reference system for quantitative fetal echocardiography based on a large multicenter study[J]. J Am Soc Echocardiogr,2019,32(2):296-302.e5.
[15]Dong J,Liu S,Liao Y,et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes[J]. IEEE J Biomed Health Inform,2020,24(4):931-942.
[16]Bridge CP,Ioannou C,Noble JA. Automated annotation and quantitative description of ultrasound videos of the fetal heart[J]. Med Image Anal,2017,36:147-161.
[17]Lee LH,Noble JA. Automatic determination of the fetal cardiac cycle in ultrasound using spatio-temporal neural networks[C]//2020 IEEE 17th International Symposium on Biomedical Imaging: IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020),April 03-07,2020,Iowa City,Iowa. New York:IEEE ,2020:1937-1940.
[18]Xu L,Liu M,Shen Z,et al. DW-Net:a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography[J]. Comput Med Imaging Graph,2020,80:101690.
[19]Gong Y,Zhang Y,Zhu H,et al. Fetal congenital heart disease echocardiogram screening based on DGACNN:adversarial one-class classification combined with video transfer learning[J]. IEEE Trans Med Imaging,2020,39(4):1206-1222.
[20]Arnaout R,Curran L,Zhao Y,et al. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J]. Nat Med,2021,27(5):882-891.
[21]Baumgartner H,de Backer J,Babu-Narayan SV,et al. 2020 ESC Guidelines for the management of adult congenital heart disease[J]. Eur Heart J,2021,42(6):563-645.
[22]Diller GP,Arvanitaki A,Opotowsky AR,et al. Lifespan perspective on congenital heart disease research:JACC state-of-the-art review[J]. J Am Coll Cardiol,2021,77(17):2219-2235.
[23]Herz C,Pace DF,Nam HH,et al. Segmentation of tricuspid valve leaflets from transthoracic 3D echocardiograms of children with hypoplastic left heart syndrome using deep learning[J]. Front Cardiovasc Med,2021,8:735587.
[24]Diller GP,Babu-Narayan S,Li W,et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle[J]. Eur Heart J Cardiovasc Imaging,2019,20(8):925-931.
[25]Diller GP,Lammers AE,Babu-Narayan S,et al. Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease:utility of diagnosis specific deep learning algorithms[J]. Int J Cardiovasc Imaging,2019,35(12):2189-2196.
[26]Wang J,Liu X,Wang F,et al. Automated interpretation of congenital heart disease from multi-view echocardiograms[J]. Med Image Anal,2021,69:101942.
[27]Wegner FK,Benesch Vidal ML,Niehues P,et al. Accuracy of deep learning echocardiographic view classification in patients with congenital or structural heart disease:importance of specific datasets [J]. J Clin Med,2022,11(3):690.
[28]Diller GP,Vahle J,Radke R,et al. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease[J]. BMC Med Imaging,2020,20(1):113.
[29]Chen H,Yan S,Xie M,et al. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentati on[J]. Comput Methods Programs Biomed,2022,215:106608.
[30]Du X,Song Y,Liu Y,et al. An integrated deep learning framework for joint segmentation of blood pool and myocardium[J]. Med Image Anal,2020,62:101685.
[31]Hauptmann A,Arridge S,Lucka F,et al. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease[J]. Magn Reson Med,2019,81(2):1143-1156.
[32]Montalt-Tordera J,Quail M,Steeden JA,et al. Reducing contrast agent dose in cardiovascular MR angiography with deep learning[J]. J Magn Reson Imaging,2021,54(3):795-805.
[33]Chang Junior J,Binuesa F,Caneo LF,et al. Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model:a pilot study[J]. PLoS One,2020,15(9):e0238199.
[34]Bertsimas D,Zhuo D,Dunn J,et al. Adverse outcomes prediction for congenital heart surgery:a machine learning approach[J]. World J Pediatr Congenit Heart Surg,2021,12(4):453-460.
[35]Ruiz-Fernández D,Monsalve Torra A,Soriano-Payá A,et al. Aid decision algorithms to estimate the risk in congenital heart surgery[J]. Comput Methods Programs Biomed,2016,126:118-127.
[36]Loke YH,Capuano F,Balaras E,et al. Computational modeling of right ventricular motion and intracardiac flow in repaired tetralogy of Fallot[J]. Cardiovasc Eng Technol,2022,13(1):41-54.
[37]Lu Y,Li B,Liu N,et al. CT-TEE image registration for surgical navigation of congenital heart disease based on a cycle adversarial network[J]. Comput Math Methods Med,2020,2020:4942121.
[38]Zhang G,Mao Y,Li M,et al. The optimal tetralogy of Fallot repair using generative adversarial networks[J]. Front Physiol,2021,12:613330.
[39]Liu X,Aslan S,Hess R,et al. Automatic shape optimization of patient-specific tissue engineered vascular grafts for aortic coarctation[J]. Annu Int Conf IEEE Eng Med Biol Soc,2020,2020:2319-2323.
[40]Lo Muzio FP,Rozzi G,Rossi S,et al. Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects[J]. J Clin Med,2021,10(22):5330.
[41]Zeng X,Hu Y,Shu L,et al. Explainable machine-learning predictions for complications after pediatric congenital heart surgery[J]. Sci Rep,2021,11(1):17244.
[42]Lu Y,Fu X,Li X,et al. Cardiac chamber segmentation using deep learning on magnetic resonance images from patients before and after atrial septal occlusion surgery[J]. Annu Int Conf IEEE Eng Med Biol Soc,2020,2020:1211-1216.
[43]Shi H,Yang D,Tang K,et al. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease[J]. Clin Nutr,2022,41(1):202-210.
[44]Brandlistuen RE,Stene-Larsen K,Holmstr?m H,et al. Symptoms of communication and social impairment in toddlers with congenital heart defects[J]. Child Care Health Dev,2011,37(1):37-43.
[45]Ruiz VM,Saenz L,Lopez-Magallon A,et al. Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data[J]. J Thorac Cardiovasc Surg,2019,158(1):234-243.e3.
[46]Rusin CG,Acosta SI,Vu EL,et al. Automated prediction of cardiorespiratory deterioration in patients with single ventricle[J]. J Am Coll Cardiol,2021,77(25):3184-3192.
[47]Samad MD,Wehner GJ,Arbabshirani MR,et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning[J]. Eur Heart J Cardiovasc Imaging,2018,19(7):730-738.
[48]Diller GP,Orwat S,Vahle J,et al. Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis[J]. Heart,2020,106(13):1007-1014.
[49]Cainelli E,Bisiacchi PS,Cogo P,et al. Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach[J]. Sci Rep,2021,11(1):2574.
相似文献/References:
[1]郭琳娟,洪葵.成人先天性心脏病心律失常的诊断和治疗进展[J].心血管病学进展,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
GUO Linjuan,HONG Kui.Advances in Diagnosis and Treatment of Adult Congenital Heart
Disease with Arrhythmia[J].Advances in Cardiovascular Diseases,2015,(12):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
[2]朱峰,陈铀.先天性心脏病相关肺动脉高压的治疗进展[J].心血管病学进展,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
ZHU Feng,CHEN You.Congenital Heart Disease-related Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(12):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
[3]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[4]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(12):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[5]黄金秋 路发文 赵永康 陈宇雨 史红蕊 王萍 杨菊仙.先天性心脏病患儿营养状况及其危险因素分析[J].心血管病学进展,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
HUANG Jinqiu,LU Fawen,ZHAO Yongkang,et al.Nutritional Status in Children with Congenital Heart Disease and the Influential Factors[J].Advances in Cardiovascular Diseases,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
[6]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(12):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(12):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[8]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(12):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[9]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(12):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[10]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(12):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]