[1]林锡祥 杨菲菲 陈煦 何昆仑.人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展[J].心血管病学进展,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
 LIN Xixiang,YANG Feifei,CHEN Xu,et al.Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2022,(12):1063.[doi:10.16806/j.cnki.issn.1004-3934.2022.12.002]
点击复制

人工智能赋能医学影像在先天性心脏病医学诊治中的研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年12期
页码:
1063
栏目:
综述
出版日期:
2022-12-25

文章信息/Info

Title:
Artificial Intelligence Medical Imaging Technology in Medical Imaging of Congenital Heart Disease
作者:
林锡祥12 杨菲菲 1 陈煦 12 何昆仑 1
(1.中国人民解放军总医院医学大数据研究中心,北京 100853;2.中国人民解放军总医院研究生院,北京 100853)
Author(s):
LIN Xixiang12YANG Feifei1CHEN Xu12HE Kunlun1
?1.Medical Big Data Research Center,Chinese PLA General Hospital,Beijing 100853,China; 2. Medical School of Chinese PLA,Chinese PLA General Hospital,Beijing 100853,China)
关键词:
先天性心脏病人工智能深度学习
Keywords:
Congenital heart diseaseArtificial intelligenceDeep learning
DOI:
10.16806/j.cnki.issn.1004-3934.2022.12.002
摘要:
先天性心脏病(先心病)是最常见的出生缺陷之一,是导致儿童死亡的最主要疾病。先心病的临床表现和发病机制呈现出高度的复杂性和异质性,为疾病的诊断和治疗带来巨大的挑战,而诊治不及时会对家庭、社会和国家带来巨大的负担。近年,人工智能技术在医学影像领域发展迅速,其庞大的数据库和卓越的运算能力可应对先心病复杂性和异质性带来的种种挑战,推动个性化和精准化医疗的发展。现围绕人工智能医学影像技术在先心病诊断和治疗方面的应用展开综述。
Abstract:
Congenital heart disease (CHD) is one of the most common birth defects and the leading cause of death in children. The clinical manifestations and pathogenesis of CHD are highly complex and heterogeneous,which brings great challenges to the diagnosis and treatment. However,undertreatment will place an enormous burden on families, societies and countries. Recently,artificial intelligence (AI) has developed rapidly in the field of clinical medicine. Due to the huge database and outstanding computing ability,AI can cope with various challenges brought by the complexity and heterogeneity of CHD,which will promote the development of personalized and precision medicine. This article reviews the application of AI in the field of diagnosis and treatment of CHD.

参考文献/References:

[1]中华人民共和国卫生部. 《中国出生缺陷防治报告(2012)》[R/OL]. (2012-09-12). http://www.gov.cn/gzdt/att/att/site1/20120912/1c6f6506c7f811bacf9301.pdf.

[2]胡晓静,黄国英. 新生儿先天性心脏病筛查的研究进展[J]. 国际儿科学杂志,2014,41(2):4.

[3]Feltes TF,Bacha E,Beekman RH 3rd,et al. Indications for cardiac catheterization and intervention in pediatric cardiac disease:a scientific statement from the American Heart Association[J]. Circulation,2011,123(22):2607-2652.

[4]Esteva A,Kuprel B,Novoa RA,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.

[5]Poplin R,Varadarajan AV,Blumer K,et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J]. Nat Biomed Eng,2018,2(3):158-164.

[6]Ouyang D,He B,Ghorbani A,et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature,2020,580(7802):252-256.

[7]Bensemlali M,Bajolle F,Laux D,et al. Neonatal management and outcomes of prenatally diagnosed CHDs[J]. Cardiol Young,2017,27(2):344-353.

[8]Sizarov A,Boudjemline Y. Valve interventions in utero:understanding the timing,indications,and approaches[J]. Can J Cardiol,2017,33(9):1150-1158.

[9]Donofrio MT,Moon-Grady AJ,Hornberger LK,et al. Diagnosis and treatment of fetal cardiac disease:a scientific statement from the American Heart Association[J]. Circulation,2014,129(21):2183-2242.

[10]Sekar P,Heydarian HC,Cnota JF,et al. Diagnosis of congenital heart disease in an era of universal prenatal ultrasound screening in southwest Ohio[J]. Cardiol Young,2015,25(1):35-41.

[11]Yeo L,Romero R. Fetal Intelligent Navigation Echocardiography (FINE):a novel method for rapid,simple,and automatic examination of the fetal heart[J]. Ultrasound Obstet Gynecol,2013,42(3):268-284.

[12]Yeo L,Romero R. Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart[J]. Ultrasound Obstet Gynecol,2017,50(4):476-491.

[13]Yeo L,Luewan S,Romero R. Fetal Intelligent Navigation Echocardiography (FINE) detects 98% of congenital heart disease[J]. J Ultrasound Med,2018,37(11):2577-2593.

[14]Gu X,Zhu H,Zhang Y,et al. Quantile score:a new reference system for quantitative fetal echocardiography based on a large multicenter study[J]. J Am Soc Echocardiogr,2019,32(2):296-302.e5.

[15]Dong J,Liu S,Liao Y,et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes[J]. IEEE J Biomed Health Inform,2020,24(4):931-942.

[16]Bridge CP,Ioannou C,Noble JA. Automated annotation and quantitative description of ultrasound videos of the fetal heart[J]. Med Image Anal,2017,36:147-161.

[17]Lee LH,Noble JA. Automatic determination of the fetal cardiac cycle in ultrasound using spatio-temporal neural networks[C]//2020 IEEE 17th International Symposium on Biomedical Imaging: IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020),April 03-07,2020,Iowa City,Iowa. New York:IEEE ,2020:1937-1940.

[18]Xu L,Liu M,Shen Z,et al. DW-Net:a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography[J]. Comput Med Imaging Graph,2020,80:101690.

[19]Gong Y,Zhang Y,Zhu H,et al. Fetal congenital heart disease echocardiogram screening based on DGACNN:adversarial one-class classification combined with video transfer learning[J]. IEEE Trans Med Imaging,2020,39(4):1206-1222.

[20]Arnaout R,Curran L,Zhao Y,et al. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J]. Nat Med,2021,27(5):882-891.

[21]Baumgartner H,de Backer J,Babu-Narayan SV,et al. 2020 ESC Guidelines for the management of adult congenital heart disease[J]. Eur Heart J,2021,42(6):563-645.

[22]Diller GP,Arvanitaki A,Opotowsky AR,et al. Lifespan perspective on congenital heart disease research:JACC state-of-the-art review[J]. J Am Coll Cardiol,2021,77(17):2219-2235.

[23]Herz C,Pace DF,Nam HH,et al. Segmentation of tricuspid valve leaflets from transthoracic 3D echocardiograms of children with hypoplastic left heart syndrome using deep learning[J]. Front Cardiovasc Med,2021,8:735587.

[24]Diller GP,Babu-Narayan S,Li W,et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle[J]. Eur Heart J Cardiovasc Imaging,2019,20(8):925-931.

[25]Diller GP,Lammers AE,Babu-Narayan S,et al. Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease:utility of diagnosis specific deep learning algorithms[J]. Int J Cardiovasc Imaging,2019,35(12):2189-2196.

[26]Wang J,Liu X,Wang F,et al. Automated interpretation of congenital heart disease from multi-view echocardiograms[J]. Med Image Anal,2021,69:101942.

[27]Wegner FK,Benesch Vidal ML,Niehues P,et al. Accuracy of deep learning echocardiographic view classification in patients with congenital or structural heart disease:importance of specific datasets [J]. J Clin Med,2022,11(3):690.

[28]Diller GP,Vahle J,Radke R,et al. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease[J]. BMC Med Imaging,2020,20(1):113.

[29]Chen H,Yan S,Xie M,et al. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentati on[J]. Comput Methods Programs Biomed,2022,215:106608.

[30]Du X,Song Y,Liu Y,et al. An integrated deep learning framework for joint segmentation of blood pool and myocardium[J]. Med Image Anal,2020,62:101685.

[31]Hauptmann A,Arridge S,Lucka F,et al. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease[J]. Magn Reson Med,2019,81(2):1143-1156.

[32]Montalt-Tordera J,Quail M,Steeden JA,et al. Reducing contrast agent dose in cardiovascular MR angiography with deep learning[J]. J Magn Reson Imaging,2021,54(3):795-805.

[33]Chang Junior J,Binuesa F,Caneo LF,et al. Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model:a pilot study[J]. PLoS One,2020,15(9):e0238199.

[34]Bertsimas D,Zhuo D,Dunn J,et al. Adverse outcomes prediction for congenital heart surgery:a machine learning approach[J]. World J Pediatr Congenit Heart Surg,2021,12(4):453-460.

[35]Ruiz-Fernández D,Monsalve Torra A,Soriano-Payá A,et al. Aid decision algorithms to estimate the risk in congenital heart surgery[J]. Comput Methods Programs Biomed,2016,126:118-127.

[36]Loke YH,Capuano F,Balaras E,et al. Computational modeling of right ventricular motion and intracardiac flow in repaired tetralogy of Fallot[J]. Cardiovasc Eng Technol,2022,13(1):41-54.

[37]Lu Y,Li B,Liu N,et al. CT-TEE image registration for surgical navigation of congenital heart disease based on a cycle adversarial network[J]. Comput Math Methods Med,2020,2020:4942121.

[38]Zhang G,Mao Y,Li M,et al. The optimal tetralogy of Fallot repair using generative adversarial networks[J]. Front Physiol,2021,12:613330.

[39]Liu X,Aslan S,Hess R,et al. Automatic shape optimization of patient-specific tissue engineered vascular grafts for aortic coarctation[J]. Annu Int Conf IEEE Eng Med Biol Soc,2020,2020:2319-2323.

[40]Lo Muzio FP,Rozzi G,Rossi S,et al. Artificial intelligence supports decision making during open-chest surgery of rare congenital heart defects[J]. J Clin Med,2021,10(22):5330.

[41]Zeng X,Hu Y,Shu L,et al. Explainable machine-learning predictions for complications after pediatric congenital heart surgery[J]. Sci Rep,2021,11(1):17244.

[42]Lu Y,Fu X,Li X,et al. Cardiac chamber segmentation using deep learning on magnetic resonance images from patients before and after atrial septal occlusion surgery[J]. Annu Int Conf IEEE Eng Med Biol Soc,2020,2020:1211-1216.

[43]Shi H,Yang D,Tang K,et al. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease[J]. Clin Nutr,2022,41(1):202-210.

[44]Brandlistuen RE,Stene-Larsen K,Holmstr?m H,et al. Symptoms of communication and social impairment in toddlers with congenital heart defects[J]. Child Care Health Dev,2011,37(1):37-43.

[45]Ruiz VM,Saenz L,Lopez-Magallon A,et al. Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data[J]. J Thorac Cardiovasc Surg,2019,158(1):234-243.e3.

[46]Rusin CG,Acosta SI,Vu EL,et al. Automated prediction of cardiorespiratory deterioration in patients with single ventricle[J]. J Am Coll Cardiol,2021,77(25):3184-3192.

[47]Samad MD,Wehner GJ,Arbabshirani MR,et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learning[J]. Eur Heart J Cardiovasc Imaging,2018,19(7):730-738.

[48]Diller GP,Orwat S,Vahle J,et al. Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis[J]. Heart,2020,106(13):1007-1014.

[49]Cainelli E,Bisiacchi PS,Cogo P,et al. Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach[J]. Sci Rep,2021,11(1):2574.

相似文献/References:

[1]郭琳娟,洪葵.成人先天性心脏病心律失常的诊断和治疗进展[J].心血管病学进展,2015,(6):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
 GUO Linjuan,HONG Kui.Advances in Diagnosis and Treatment of Adult Congenital Heart Disease with Arrhythmia[J].Advances in Cardiovascular Diseases,2015,(12):752.[doi:10.3969/j.issn.1004-3934.2015.06.024]
[2]朱峰,陈铀.先天性心脏病相关肺动脉高压的治疗进展[J].心血管病学进展,2019,(6):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
 ZHU Feng,CHEN You.Congenital Heart Disease-related Pulmonary Arterial Hypertension[J].Advances in Cardiovascular Diseases,2019,(12):894.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.014]
[3]渠海贤 李涛 程流泉.人工智能在心脏磁共振成像中的应用进展[J].心血管病学进展,2019,(5):659.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.001]
[4]袁佳栎 王群山.人工智能在心律失常诊断中的前景与挑战[J].心血管病学进展,2020,(10):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
 YUAN JialiWANG Qunshan.Prospects and Challenges of Arrhythmia Diagnosis by Artificial Intelligence[J].Advances in Cardiovascular Diseases,2020,(12):999.[doi:10.16806/j.cnki.issn.1004-3934.2020.10.001]
[5]黄金秋 路发文 赵永康 陈宇雨 史红蕊 王萍 杨菊仙.先天性心脏病患儿营养状况及其危险因素分析[J].心血管病学进展,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
 HUANG Jinqiu,LU Fawen,ZHAO Yongkang,et al.Nutritional Status in Children with Congenital Heart Disease and the Influential Factors[J].Advances in Cardiovascular Diseases,2020,(12):1324.[doi:10.16806/j.cnki.issn.1004-3934.2020.12.023]
[6]沈文茜 杜国庆.机器学习在超声心动图中的应用进展[J].心血管病学进展,2021,(1):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
 SHEN Wenqian,DU Guoqing.Machine Learning in Echocardiography[J].Advances in Cardiovascular Diseases,2021,(12):43.[doi:10.16806/j.cnki.issn.1004-3934.2021.01.000]
[7]王苏淮 李晶洁.机器学习在心血管疾病中的临床应用进展[J].心血管病学进展,2021,(2):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
 WANG Suhuai,LI Jingjie.Clinical Applications of Machine Learning in Cardiovascular Disease[J].Advances in Cardiovascular Diseases,2021,(12):144.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.013]
[8]兰贝蒂 王瑞涛.人工智能及3D打印技术在心血管疾病诊疗中的应用进展[J].心血管病学进展,2021,(4):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
 LAN Beidi,WANG Ruitao.Application Progress of Artificial Intelligence and 3D Printing Technology in the Diagnosis and Treatment of Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2021,(12):292.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.002]
[9]王继航 田进文 王建 郭毅 周星儿 付振虹 沈明志 刘亮.基于人工智能可穿戴设备及物联网的胸痛区域平台研究进展[J].心血管病学进展,2021,(6):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
 WANG JihangTIAN JinwenWANG JianGUO YiZHOU XingerGUO utingFU ZhenhongSHEN MingzhiLIU Liang.Chest Pain Area Platform based on Artificial Intelligence Wearable Devices and Internet of Things[J].Advances in Cardiovascular Diseases,2021,(12):492.[doi:10.16806/j.cnki.issn.1004-3934.2021.06.004]
[10]周玲梅 张文倩 张智伟.体-肺动脉分流术在建立先天性心脏病动物模型中的应用进展[J].心血管病学进展,2021,(7):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]
 ZHOU Lingmei,ZHANG Wenqian,ZHANG Zhiwei.Application Progress of Systemic Pulmonary Arterial Shunt in Animal Model of Congenital Heart Disease[J].Advances in Cardiovascular Diseases,2021,(12):628.[doi:10.16806/j.cnki.issn.1004-3934.2021.07.013]

更新日期/Last Update: 2023-02-03