[1]杨伟 苗立坤 陈章荣.自噬与心肌重构研究进展[J].心血管病学进展,2022,(6):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
 YANG WeiIAO LikunCHEN Zhangrong.Autophagy and Myocardial Remodeling[J].Advances in Cardiovascular Diseases,2022,(6):535.[doi:10.16806/j.cnki.issn.1004-3934.2022.06.014]
点击复制

自噬与心肌重构研究进展()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年6期
页码:
535
栏目:
综述
出版日期:
2022-06-25

文章信息/Info

Title:
Autophagy and Myocardial Remodeling
作者:
杨伟1 苗立坤1 陈章荣2
(1.漯河市中心医院,河南 漯河462000;2.550000)
Author(s):
YANG Wei1IAO Likun1CHEN Zhangrong2
(1.Luohe City Central Hospital, Luohe 462000, Henan, China; 2. The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China)
关键词:
自噬心肌重构心力衰竭
Keywords:
Autopagy Myocardial remodeling Heart failure
DOI:
10.16806/j.cnki.issn.1004-3934.2022.06.014
摘要:
心肌重构是心脏在一些生理或病理的刺激作用下,心肌细胞和心肌细胞外基质在细胞结构、功能、数量及遗传表型方面出现明显的变化。自噬是一种区别于细胞凋亡的程序性细胞死亡方式 ,越来越多的证据表明自噬在心肌重构过程中扮演着重要角色,然而自噬在其中的利弊仍存在争议,现从自噬在心肌重构发生发展过程中的作用、机制及治疗方面做一概述。
Abstract:
Myocardial remodeling is a significant change in the cellular structure, function, number, and genetic phenotype of myocarocytes and extracellular matrix under the action of some physiological or pathological stimuli. Autopagy is a programmed cell death mode different from apoptosis. More and more evidence shows that autophagy plays an important role in myocardial remodeling. However, the advantages and disadvantages of autophagy are still controversial. This article gives a summary of the role, mechanism and treatment of autophagy in the occurrence and development of myocardial remodeling

参考文献/References:

[1] Corsetti G,Chen-Scarabelli C,Romano C,et al. Autophagy and oncosis/necroptosis are enhanced in cardiomyocytes from heart failure patients[J]. Med Sci Monit Basic Res,2019,25:33-44.[2] Dewanjee S, Vallamkondu J, Kalra RS, et al. Autophagy in the diabetic heart: a potential pharmacotherapeutic target in diabetic cardiomyopathy[J]. Ageing Res Rev,2021,68:101338.[3] Voigt N, Sadoshima J. Scientists on the spot: autophagy and heart disease[J]. Cardiovasc Res,2019,115(10):e91-e92.[4] Yu L. A special review collection on autophagy[J]. Cell Res,2020,30(7):553.[5] Sciarretta S, Hariharan N, Monden Y,et al. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart?[J]. Pediatr Cardiol,2011,32(3):275-281.[6] Oyabu J,Yamaguchi O,Hikoso S,et al. Autophagy-mediated degradation is necessary for regression of cardiac hypertrophy during ventricular unloading[J]. Biochem Biophys Res Commun,2013,441(4):782-792.[7] Nakai A,Yamaguchi O,Takeda T,et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress[J]. Nat Med,2007,13(5):619-624.[8] An L,Zhao X,Wu J,et al. Involvement of autophagy in cardiac remodeling in transgenic mice with cardiac specific over-expression of human programmed cell death 5[J]. PLoS One,2012,7(1):e30097.[9] Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress[J]. J Clin Invest,2007,117(7):1782-1793.[10] Tomasoni D,Adamo M,Anker MS,et al. Heart failure in the last year: progress and perspective[J]. ESC Heart Failure,2020,7(6):3505-3530.[11] Andres AM,Stotland A,Queliconi BB,et al. A time to reap,a time to sow: mitophagy and biogenesis in cardiac pathophysiology[J]. J Mol Cell Cardiol,2015,78:62-72.[12] Lu L,Wu W,Yan J,et al. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure[J]. Int J Cardiol,2010,134(1):82-90.[13] Lavandero S,Chiong M,Rothermel BA,et al. Autophagy in cardiovascular biology[J].J Clin Invest,2015,125(1):55-64.[14]Chen MC,Chang JP,Wang YH,et al.Autophagy as a mechanism for myolysis of cardiomyocytes in mitral regurgitation[J]. Eur J Clin Invest,2011,41(3):299-307.[15] Fidziańska A, Bilińska ZT, Walczak E,et al. Autophagy in transition from hypertrophiccardiomyopathy to heart failure[J]. J Electron Microsc(Tokyo),2010,59(2):181-183.?16] Feng Z,Jiang HX,Chen H,et al. Adaptive autophagy offers cardiorenal protection in rats with acute myocardial infarction[J]. Cardiol Res Pract,2020,2020:7158975.[17] Li Q,Xie J,Li R,et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction[J]. J Cell Mol Med,2014,18(5):919-928.[18] Stacey RB, Hundley WG. Integrating measures of myocardial fibrosis in the transition from hypertensive heart disease to heart failure[J]. Curr Hypertens Rep,2021,23(4):22.[19] Ghavami S,Cunnington RH,Gupta S,et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts[J]. Cell Death Dis,2015,6(3):e1696.[20] Bernard M,Dieudé M,Yang B,et al. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF[J]. Autophagy,2014,10(12):2193-2207.[21] Georgescu SP, Aronovitz MJ, Iovanna JL,et al. Decreased metalloprotease 9 induction,cardiac fibrosis,and higher autophagy after pressure overload in mice lacking the transcriptional regulator p8[J]. Am J Physiol Cell Physiol,2011,301(5):C1046-C1056.[22] Gao G,Chen W,Yan M,et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling[J]. Int J Mol Med,2020,45(1):195-209.[23] Bishu K,Ogut O,Kushwaha S,et al. Anti-remodeling effects of rapamycin in experimental heart failure: dose response and interaction with angiotensin receptor blockade[J]. PLoS One,2013,8(12):e81325.[24] Xie Z, Lau K, Eby B,et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice[J]. Diabetes,2011,60(6):1770-1778.[25] Yin M,van der Horst IC, van Melle JP,et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure[J]. Am J Physiol Heart Circ Physiol,2011,301(2):H459-H468.[26] Halabi A, Sen J, Huynh Q,et al. Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis[J]. Cardiovasc Diabetol,2020,19(1):124.[27] Mao N,Tan RZ,Wang SQ,et al. Ginsenoside Rg1 inhibits angiotensin Ⅱ‐induced podocyte autophagy via AMPK/mTOR/PI3K pathway[J]. Cell Biol Int,2016,40(8):917-925.

相似文献/References:

[1]吉家钗 陈娟 符策岗.利拉鲁肽通过促进自噬减轻去氧肾上腺素诱导的原代大鼠心肌肥厚[J].心血管病学进展,2019,(7):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
 JI jiachai,CHEN juan,FU cegang.Liraglutide protects against hypertrophy induced by phenylephrine in Neonatal Rat Cardiac Myocytes via promoting the autophagy flux[J].Advances in Cardiovascular Diseases,2019,(6):1067.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.025]
[2]位晨晨,钟明.糖尿病心肌病的发病机制[J].心血管病学进展,2020,(2):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
 WEI Chenchen,ZHONG Ming.Pathogenesis of Diabetic Cardiomyopathy[J].Advances in Cardiovascular Diseases,2020,(6):135.[doi:10.16806/j.cnki.issn.1004-3934.20.02.009]
[3]甘婷 李景东.哺乳动物雷帕霉素靶蛋白介导的自噬在心血管疾病中作用的研究进展[J].心血管病学进展,2020,(4):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
 Gan Ting,LI Jingdong.Research progress of mTOR-mediated Autophagy in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(6):365.[doi:10.16806/j.cnki.issn.1004-3934.2020.04.009]
[4]刘子韩 刘志豪 周雨扬 许骁 李泽衍 周丽平 江洪.下丘脑腹内侧核腹外侧区激活恶化心肌梗死后的心脏功能[J].心血管病学进展,2021,(4):380.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.021]
 LIU Zihan,LIU Zhihao,ZHOU Yuyang,et al.Effect of Chemogenetic Activation of VMHVL on Cardiac Structure and Function after Myocardial Infarction[J].Advances in Cardiovascular Diseases,2021,(6):380.[doi:10.16806/j.cnki.issn.1004-3934.2021.04.021]
[5]陈稳 叶强.自噬与心房颤动关系的研究进展[J].心血管病学进展,2022,(3):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 CHEN Wen,YE Qiang.The Relationship Between Autophagy and Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2022,(6):218.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[6]李开 饶莉.线粒体自噬的分子生物学过程及其在心脏疾病中的作用[J].心血管病学进展,2022,(3):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 LI Kai,RAO Li.Molecular Biological Process of Mitophagy and Its Role in Heart Diseases[J].Advances in Cardiovascular Diseases,2022,(6):222.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[7]于颖 龙聪.动脉粥样硬化中自噬与凋亡相互作用的研究进展[J].心血管病学进展,2022,(5):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
 YU Ying,LONG Cong.Crosstalk Between Autophagy and Apoptosis in Atherosclerosis[J].Advances in Cardiovascular Diseases,2022,(6):454.[doi:10.16806/j. cnki. issn.1004-3934.2022.05.017]
[8]韩亚凡 李耀东.内质网应激与心房颤动的研究进展[J].心血管病学进展,2023,(6):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
 HAN Yafan,LI Yaodong.Critical Role of Endoplasmic Reticulum Stress in Atrial Fibrillation[J].Advances in Cardiovascular Diseases,2023,(6):491.[doi:10.16806/j.cnki.issn.1004-3934.2023.06.003]
[9]冉黔松 周厚荣.长链非编码RNA调节自噬在心肌缺血再灌注损伤中的研究进展[J].心血管病学进展,2024,(3):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
 RAN Qiansong ZHOU Hourong.Long Non-Coding RNA Regulating Autophagy in Myocardial Ischemia-Reperfusion Injury[J].Advances in Cardiovascular Diseases,2024,(6):238.[doi:10.16806/j.cnki.issn.1004-3934.2024.03.011]
[10]李蓝鸽 郑雅璇 吕婷婷 李锟 孔令云 周博达 刘芳 张萍 薛亚军.微RNA在冠状动脉微栓塞后心肌损伤的研究进展[J].心血管病学进展,2024,(8):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]
 LI Lange,ZHENG Yaxuan,LYU Tingting,et al.MicroRNA-mediated Regulation of Cardiomyocyte Injury Following Coronary Microembolisation[J].Advances in Cardiovascular Diseases,2024,(6):747.[doi:10.16806/j.cnki.issn.1004-3934.2024.08.016]

更新日期/Last Update: 2022-08-05