[1]肖轶 余国龙.不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用[J].心血管病学进展,2022,(4):293-296.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
 XIAO Yi,YU Guolong?/html>.Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2022,(4):293-296.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.002]
点击复制

不同干细胞来源的外泌体在缺血性心脏病中的促血管新生作用()
分享到:

《心血管病学进展》[ISSN:51-1187/R/CN:1004-3934]

卷:
期数:
2022年4期
页码:
293-296
栏目:
综述
出版日期:
2022-04-25

文章信息/Info

Title:
Application of Exosomes Derived from Various Stem Cells?n Ischemic Heart Disease
作者:
肖轶 余国龙
(中南大学湘雅医院,湖南 长沙 410008)
Author(s):
XIAO Yi YU Guolong?/html>
?Xiangya Hospital of Central South University,Changsha 410008,Hunan,China)
关键词:
外泌体缺血性心脏病血管新生干细胞
Keywords:
Exosomes Ischemic heart disease Angiogenesis Stem cells
DOI:
10.16806/j.cnki.issn.1004-3934.2022.04.002
摘要:
缺血性心脏病是指各种原因造成心肌供血量不足,导致氧气和营养物质供应不足,引起各种心脏功能障碍。促血管新生是治疗缺血性心脏病的一个关键因素。越来越多研究表明,干细胞来源的外泌体作为一种细胞间相互作用的媒介,为缺血性心脏病的治疗提供了新的可能。现对各种干细胞来源的外泌体在治疗缺血性心脏病中促血管新生作用及机制做一综述。
Abstract:
Ischemic heart disease refers to the lack of myocardial blood supply caused by various factors,resulting in the lack of oxygen and nutrients supply and cardiac dysfunction. Promoting angiogenesis is a key factor in the treatment of ischemic heart disease. More and more studies have shown that stem cell-derived exosomes ,as a messager of cellular interaction ,provide a new strategy for the treatment of ischemic heart disease. This paper aims to review the therapeutic effect of exosomes from various stem cells in ischemic heart disease and its mechanism.

参考文献/References:

[1]Grifoen AW,Molema G. Angiogenesis:potentials for pharmacologic intervention in the treatment of cancer,cardiovascular diseases,and chronic infammation[J]. Pharmacol Rev,2000,52(2):237-268.

[2]Khaksar M,Sayyari M,Rezaie J,et al. High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu[J]. Cell Biochem Funct,2018,36(7):346-356.

[3]Abdyazdani N,Nourazarian A,Charoudeh HN,et al. The role of morphine on rat neural stem cells viability,neuro-angiogenesis and neuro-steroidgenesis properties[J]. Neurosci Lett,2017,636:205-212.

[4]Akbari A,Jabbari N,Sharif R,et al. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine[J]. Life Sci,2020,249:117447.

[5]Adams RH,Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis[J]. Nat Rev Mol Cell Biol,2007,8(6):464-478.

[6]Ahmadi M,Rezaie J. Tumor cells derived-exosomes as angiogenenic agents:possible therapeutic implications[J]. J Transl Med,2020,18(1):294.

[7]Eichhorn ME,Kleespies A,Angele MK,et al. Angiogenesis in cancer:molecular mechanisms,clinical impact[J]. Langenbecks Arch Surg,2007,392(3):371-379.

[8]Ladomery MR,Harper SJ,Bates DO. Alternative splicing in angiogenesis:the vascular endothelial growth factor paradigm[J]. Cancer Lett,2007,249(2):133-142.

[9]Tschuschke M,Kocherova I,Bryja A,et al. Inclusion biogenesis,methods of isolation and clinical application of human cellular exosomes[J]. J Clin Med,2020,9(2):436.

[10]Akbari A,Rezaie J. Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia[J]. Stem Cell Res Ther,2020,11(1):356.

[11]Urbanelli L,Magini A,Buratta S,et al. Signaling pathways in exosomes biogenesis,secretion and fate[J]. Genes(Basel),2013,4(2):152-170.

[12]Zhang J,Chen C,Hu B,et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling[J]. Int J Biol Sci,2016,12(12):1472-1487.

[13]Ertl G,Frantz S. Healing after myocardial infarction[J]. Cardiovasc Res,2005,66(1):22-32.

[14]Marbán E. Breakthroughs in cell therapy for heart disease:focus on cardiosphere-derived cells[J]. Mayo Clin Proc,2014,89(6):850-858.

[15]Kreke M,Smith RR,Marbán L,et al. Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction[J]. Expert Rev Cardiovasc Ther,2012,10(9):1185-1194.

[16]Ibrahim AG,Cheng K,Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy[J]. Stem Cell Reports,2014,2(5):606-619.

[17]Gallet R,Dawkins J,Valle J,et al. Exosomes secreted by cardiospherederived cells reduce scarring,attenuate adverse remodelling,and improve function in acute and chronic porcine myocardial infarction[J]. Eur Heart J,2017,38(3):201-211.

[18]Namazi H,Mohit E,Namazi I,et al. Exosomes secreted by hypoxic cardiospherederived cells enhance tube formation and increase pro-angiogenic miRNA[J]. J Cell Biochem,2018,119(5):4150-4160.

[19]Dougherty JA,Patel N,Kumar N,et al. Human cardiac progenitor cells enhance exosome release and promote angiogenesis under physoxia[J]. Front C ell D ev B iol,2020,8:130.

[20]Wang L,Jia Q,Xinnong C,et al. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease[J]. J Cell Mol Med,2019,23(11):7124-7131.

[21]Youn SW,Li Y,Kim YM,et al. Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis[J]. Antioxidants(Basel),2019,8(1):18.

[22]Yi M,Wu Y,Long J,et al. Exosomes secreted from osteocalcin-overexpressing endothelial progenitor cells promote endothelial cell angiogenesis[J]. Am J Physiol Cell Physiol,2019,317(5):932-941.

[23]Khan M,Nickolof E,Abramova T,et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction[J]. Circ Res,2015,117(1):52-64.

[24]Kervadec A,Bellamy V,El Harane N,et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the benefcial efects of their parent cells in the treatment of chronic heart failure[J]. J Heart Lung Transplant,2016,35(6):795-807.

[25]Arslan F,Lai RC,Smeets MB,et al. Mesenchymal stem cell derived exosomes increase ATP levels,decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury[J]. Stem cell Res,2013,10(3):301-312.

[26]Burke J,Kolhe R,Hunter M,et al. Stem cellderived exosomes:a potential alternative therapeutic agent in orthopaedics[J]. Stem Cells Int,2016,2016:5802529.

[27]Mackie AR,Klyachko E,Thorne T,et al. Sonic hedgehog-modifed human CD34+ cells preserve cardiac function after acute myocardial infarction[J]. Circ Res,2012,111(3):312-321.

[28]Teng X,Chen L,Chen W,et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-infammation[J]. Cell Physiol Biochem,2015,37(6):2415-2424.

[29]Kang K,Ma R,Cai W,et al. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction[J]. Stem Cells Int,2015,2015:659890.

[30]Vrijsen KR,Maring JA,Chamuleau SA,et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN[J]. Adv Healthc Mater,2016,5(19):2555-2565.

[31]Zhao Y,Sun X,Cao W,et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury[J]. Stem Cells Int,2015,2015:761643.

[32]Wang K,Jiang Z,Webster KA,et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21[J]. Stem Cells Transl Med,2017,6(1):209-222.

[33]Min G,Bin Y,Jingcai W,et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget,2017,8(28):45200-45212.

[34]Gao W,He R,Ren J,et al. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1 alpha pathway[J]. FEBS O pen B io,2021,11(5):1364-1373.

[35]Adamiak M,Cheng G,Bobis-Wozowicz S,et al. Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more efective for cardiac repair than iPSCs[J]. Circ Res,2018,122(2):296-309.

[36]El Harane N,Kervadec A,Bellamy V,et al. Acellular therapeutic approach for heart failure:in vitro production of extracellular vesicles from human cardiovascular progenitors[J]. Eur Heart J,2018,39(20):1835-1847.

[37]Arenaccio C,Chiozzini C,Ferrantelli F,et al. Exosomes in therapy:engineering,pharmacokinetics and future applications[J]. Curr Drug Targets,2019,20(1):87-95.

相似文献/References:

[1]宋菲,综述,俞梦越,等.干细胞来源的外泌体:心肌梗死治疗新启示[J].心血管病学进展,2016,(2):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
 SONG Fei,YU Mengyue.Exosomes Derived from Stem Cells: Novel Approach in Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2016,(4):125.[doi:10.16806/j.cnki.issn.1004-3934.2016.02.007]
[2]宋林声,综述,陆地,等.低剂量多巴酚丁胺负荷磁共振成像在缺血性心脏病中的应用研究[J].心血管病学进展,2016,(3):285.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.018]
 SONG Linsheng,LU Di,ZHAO Xinxiang.Low-dose Dobutamine Stress MRI Myocardial Perfusion and Assessment of Myocardial Viability[J].Advances in Cardiovascular Diseases,2016,(4):285.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.018]
[3]翟恒博,综述,刘俊,等.缺血性心脏病再认识[J].心血管病学进展,2016,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.018]
 ZHAI Hengbo,LIU Jun.Rethinking of Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2016,(4):395.[doi:10.16806/j.cnki.issn.1004-3934.2016.04.018]
[4]姚雯,毛露,孙硕,等.心源性外泌体作为冠心病标志物和新靶点展望[J].心血管病学进展,2019,(6):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
 YAO Wen,MAO Lu,SUN Shuo,et al.Exogenous Exosome as A New Marker and Target of Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(4):844.[doi:10.16806/j.cnki.issn.1004-3934.2019.06.002]
[5]张维 张恒 康品方.外泌体在心血管疾病中的研究进展[J].心血管病学进展,2019,(5):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
 Zhang WeiKang Pinfang.Exosome in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2019,(4):818.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.038]
[6]张伟 木胡牙提.外泌体源性miRNAs在心血管疾病中的研究进展[J].心血管病学进展,2020,(2):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
 Zhang Wei,Muhuyati.Exogenous miRNAs in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):111.[doi:10.16806/j.cnki.issn.1004-3934.2020.02.002]
[7]李一凡 张智伟.巨噬细胞相关的外泌体在心血管疾病中的作用研究进展[J].心血管病学进展,2020,(8):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
 LI Yifan,ZHANG Zhiwei.Role of Macrophage-Related Exosomes in Cardiovascular Diseases[J].Advances in Cardiovascular Diseases,2020,(4):839.[doi:10.16806/j.cnki.issn.1004-3934.2020.08.014]
[8]施国荣 刘婷婷 田欣 祝自新 郑文荣 王宇峰 孙芳玲 王文.Eph/ephrin信号通路在缺血性心脏病中血管生成中的研究进展[J].心血管病学进展,2021,(2):158.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.016]
 Shi Guorong,Liu Tingting,Tian Xin,et al.Research Progress of Eph/ephrin Signaling Pathway in Angiogenesis of Ischemic Heart Disease[J].Advances in Cardiovascular Diseases,2021,(4):158.[doi:10.16806/j.cnki.issn.1004-3934.2021.02.016]
[9]叶莎 杨翠玲 郑媛媛.骨髓间充质干细胞来源外泌体通过PI3K/Akt途径减轻H2O2诱导心肌细胞损伤[J].心血管病学进展,2022,(3):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
 YE Sha,YANG Cuiling,ZHENG Yuanyuan.Bone Marrow Mesenchymal Stem Cells Derived Exosomes Attenuate H 2O2 Induced Cardiomyocyte Injury Via PI3K/Akt Pathway[J].Advances in Cardiovascular Diseases,2022,(4):269.[doi:10.16806/j.cnki.issn.1004-3934.2022.03.000]
[10]俞佳丽 景雨 张剑 陈楚 陆齐 顾周山 陈子微 周大胜 景宏美 潘丽华.间充质干细胞来源的外泌体在心肌梗死治疗中的研究进展[J].心血管病学进展,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]
 YU JialiJING YuZHANG JianCHEN ChuLU QiGU ZhoushanCHEN ZiweiZHOU DashenJING HongmeiPAN Lihua.Exosomes Derived from Mesenchymal Stem Cells?n the Treatment of Myocardial Infarction[J].Advances in Cardiovascular Diseases,2022,(4):341.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.013]

更新日期/Last Update: 2022-05-13