参考文献/References:
[1]Donato AJ,Machin DR,Lesniewski LA. Mechanisms of dysfunction in the aging vasculature and role in age-related disease[J]. Circ Res,2018,123(7):825-848.
[2]Pi X,Xie L,Patterson C. Emerging roles of vascular endothelium in metabolic homeostasis[J]. Circ Res,2018,123(4):477-494.
[3]Minami T,Muramatsu M,Kume T. Organ/Tissue-specific vascular endothelial cell heterogeneity in health and disease[J]. Biol Pharm Bull,2019,42(10):1609-1619.
[4]Augustin HG, Koh GY. Organotypic vasculature:from descriptive heterogeneity to functional pathophysiology[J]. Science,2017,357(6353):eaal2379.
[5]Wong BW,Marsch E,Treps L,et al. Endothelial cell metabolism in health and disease:impact of hypoxia[J]. EMBO J,2017,36(15):2187-2203.
[6]Sluiter TJ,van Buul JD,Huveneers S,et al. Endothelial barrier function and leukocyte transmigration in atherosclerosis[J]. Biomedicines,2021,9(4):328.
[7]Alabi RO,Farber G,Blobel CP. Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds[J]. Physiol Rev,2018,98(4):2025-2061.
[8]Krüger-Genge A,Blocki A,Franke RP,et al. Vascular endothelial cell biology:an update[J]. Int J Mol Sci,2019,20(18):4411.
[9]Koupenova M,Kehrel BE,Corkrey HA,et al. Thrombosis and platelets:an update[J]. Eur Heart J,2017,38(11):785-791.
[10]Heo KS,Fujiwara K,Abe J. Shear stress and atherosclerosis[J]. Mol Cells,2014,37(6):435-440.
[11]Niu N,Xu S,Xu Y,et al. Targeting mechanosensitive transcription factors in atherosclerosis[J]. Trends Pharmacol Sci,2019,40(4):253-266.
[12]Lu YW,Martino N,Gerlach BD,et al. MEF2 (myocyte enhancer factor 2) is essential for endothelial homeostasis and the atheroprotective gene expression program[J]. Arterioscler Thromb Vasc Biol,2021,41(3):1105-1123.
[13]Chen HJ,Tas SW,de Winther MPJ. Type-Ⅰ interferons in atherosclerosis[J]. J Exp Med,2020,217(1):e20190459.
[14]Li M,Wang Z,Wang P,et al. TFEB:a emerging regulator in lipid homeostasis for atherosclerosis[J]. Front Physiol,2021,12:639920.
[15]Lu H,Fan Y,Qiao C,et al. TFEB inhibits endothelial cell inflammation and reduces atherosclerosis[J]. Sci Signal,2017,10(464):eaah4214.
[16]Gimbrone MA Jr,García-Carde?a G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ Res,2016,118(4):620-636.
[17]Incalza MA,D’Oria R,Natalicchio A,et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vascul Pharmacol,2018,100:1-19.
[18]Libby P,Buring JE,Badimon L,et al. Atherosclerosis[J]. Nat Rev Dis Primers,2019,5(1):56.
[19]Souilhol C,Harmsen MC,Evans PC,et al. Endothelial-mesenchymal transition in atherosclerosis[J]. Cardiovasc Res,2018,114(4):565-577.
[20]Chen PY,Schwartz MA,Simons M. Endothelial-to-mesenchymal transition,vascular inflammation,and atherosclerosis[J]. Front Cardiovasc Med,2020,7:53.
[21]Chistiakov DA,Melnichenko AA,Myasoedova VA,et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med (Berl),2017,95(11):1153-1165.
[22]Chistiakov DA,Orekhov AN,Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities[J]. Int J Cardiol,2017,245:236-244.
[23]Paone S,Baxter AA,Hulett MD,et al. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis[J]. Cell Mol Life Sci,2019,76(6):1093-1106.
[24]Jenkins NT,Padilla J,Boyle LJ,et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium[J]. Hypertension,2013,61(3):615-621.
[25]Tremblay JC,Thom SR,Yang M,et al. Oscillatory shear stress,flow-mediated dilatation,and circulating microparticles at sea level and high altitude[J]. Atherosclerosis,2017,256:115-122.
[26]Shu Z,Tan J,Miao Y,et al. The role of microvesicles containing microRNAs in vascular endothelial dysfunction[J]. J Cell Mol Med,2019,23(12):7933-7945.
[27]Chen F,Ye X,Jiang H,et al. MicroRNA-151 attenuates apoptosis of endothelial cells induced by oxidized low-density lipoprotein by targeting interleukin-17A (IL-17A)[J]. J Cardiovasc Transl Res,2021,14(3):400-408.
[28]Zhong S,Li L,Shen X,et al. An update on lipid oxidation and inflammation in cardiovascular diseases[J]. Free Radic Biol Med,2019,144:266-278.
[29]Zhang Q,Pan Y,Ma X,et al. Elevated secretion of aldosterone increases TG/HDL-C ratio and potentiates the ox-LDL-induced dysfunction of HUVEC[J]. Cell J,2021,23(1):61-69.
[30]Su G,Sun G,Lv J,et al. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis[J]. BMC Cardiovasc Disord,2021,21(1):221.
[31]Yamagata K. Soy isoflavones inhibit endothelial cell dysfunction and prevent cardiovascular disease[J].?J Cardiovasc Pharmacol,2019,74(3):201-209.
[32]Cinegaglia N,Acosta-Navarro J,Rainho C,et al. Association of omnivorous and vegetarian diets with antioxidant defense mechanisms in men[J]. J Am Heart Assoc,2020,9(12):e015576.
[33]Chen YT,Yuan HX,Ou ZJ,et al. Microparticles (exosomes) and atherosclerosis[J]. Curr Atheroscler Rep,2020,22(6):23.
[34]Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology[J]. J Cardiovasc Transl Res,2021,14(2):195-212.
[35]Wang C,Li Z,Liu Y,et al. Exosomes in atherosclerosis:performers,bystanders,biomarkers,and therapeutic targets[J]. Theranostics,2021,11(8):3996-4010.
[36]Wu G,Zhang J,Zhao Q,et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl,2020,59(10):4068-4074.
[37]Li S,Sengupta D,Chien S. Vascular tissue engineering:from in vitro to in situ[J]. Wiley Interdiscip Rev Syst Biol Med,2014,6(1):61-76.
[38]Huang F,Hsieh YF,Qiu X,et al. Engineering the composition of microfibers to enhance the remodeling of a cell-free vascular graft[J]. Nanomaterials (Basel),2021,11(6):1613.
[39]Liu J,Long H,Zeuschner D,et al. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting[J]. Nat Commun,2021,12(1):3402.
相似文献/References:
[1]李乐亮,综述,李萍,等.炎症标志物与颈动脉粥样斑块的稳定性[J].心血管病学进展,2016,(3):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
LI Leliang,LI Ping.Stability of Inflammatory Markers and Carotid Artery Plaque[J].Advances in Cardiovascular Diseases,2016,(2):219.[doi:10.16806/j.cnki.issn.1004-3934.2016.03.001]
[2]耿春晖 关秀茹.MicroRNA作为动脉粥样硬化的诊断生物标志物的研究进展[J].心血管病学进展,2019,(7):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
GENG Chunhui,GUAN Xiuru.microRNA as a Diagnostic Biomarker for Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):996.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.008]
[3]乐健 何胜虎.前蛋白转化酶枯草溶菌素9致动脉粥样硬化的机制研究进展[J].心血管病学进展,2019,(7):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
YUE Jian,HE Shenghu.Advances in the mechanism of PCSK9-induced atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):1000.[doi:10.16806/j.cnki.issn.1004-3934.2019.07.009]
[4]武亚琳,梁斌,杨志明.NLRP3/IL-1β途径的促动脉粥样硬化作用及临床应用[J].心血管病学进展,2019,(6):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
WU Yalin,LIANG Bin,YANG Zhiming.The Role of NLRP3/IL-1in Atherosclerosis and Clinical Application[J].Advances in Cardiovascular Diseases,2019,(2):943.[doi:10.16806/j.cnki.issn.1004-3934.2016.06.026]
[5]李琦玉 ?张宁 陈婧 黄浙勇.动脉粥样硬化的抗血小板分子靶向治疗[J].心血管病学进展,2019,(5):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
LI Qiyu,ZHANG Ning,CHEN Jing,et al.Anti-Platelet Molecular Targeted Therapy or Atherosclerosis[J].Advances in Cardiovascular Diseases,2019,(2):701.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.010]
[6]侯冬华 郝丽荣.长正五聚蛋白3在动脉粥样硬化和心血管疾病中作用研究的新进展[J].心血管病学进展,2019,(5):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
HOU Donghua H AO Lirong.The Study of Atherosclerosis and Cardiovascular Diseases with Pentapycin 3[J].Advances in Cardiovascular Diseases,2019,(2):805.[doi:10.16806/j.cnki.issn.1004-3934.2019.05.035]
[7]焦新峰 刘正霞 鲁翔.白介素-8在冠心病中的研究进展[J].心血管病学进展,2019,(8):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
JIAO Xinfeng,LIU Zhengxia,LU Xiang.Research Progress of Interleukin-8 in Coronary Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):1126.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.014]
[8]徐侨 刘正霞 鲁翔.白介素22在动脉粥样硬化和2型糖尿病中的作用[J].心血管病学进展,2019,(9):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
XU Qiao,LIU Zhengxia,LU Xiang.IL-22 in Atherosclerosis and Type 2 Diabetes Mellitus[J].Advances in Cardiovascular Diseases,2019,(2):1260.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.019]
[9]石文坚 花蕾 孟祥光 袁义强.环状RNA在冠状动脉粥样硬化性心脏病中的研究进展[J].心血管病学进展,2019,(9):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
SHI Wenjian,HUA Lei,MENG Xiangguang,et al.CircRNA in Coronary Atherosclerotic Heart Disease[J].Advances in Cardiovascular Diseases,2019,(2):1286.[doi:10.16806/j.cnki.issn.1004-3934.2019.09.026]
[10]代承忠 彭礼清 余建群 刘静 蒲华霞.双源CT血管成像评价经导管主动脉瓣置入术术前患者颈动脉斑块[J].心血管病学进展,2019,(8):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
DAI Chengzhong,PENG Liqing,YU Jianqun,et al.Evaluation of Carotid Arteries Plaques in Patients Referred for TAVI with Dual-source CT Angiography[J].Advances in Cardiovascular Diseases,2019,(2):1182.[doi:10.16806/j.cnki.issn.1004-3934.2019.08.028]
[11]阎文江 陈良 杨晶晶.超声分子成像技术在靶向诊疗动脉粥样硬化中的进展[J].心血管病学进展,2022,(4):309.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]
YAN Wenjiang,CHEN Liang,YANG Jingjing.Molecular Ultrasound Imaging Technology for Targeting Diagnosis?nd Treatment of Atherosclerosis?/html>[J].Advances in Cardiovascular Diseases,2022,(2):309.[doi:10.16806/j.cnki.issn.1004-3934.2022.04.006]